Skip to main content
Log in

The Leggett–Garg inequalities and the relative entropy of coherence in the Bixon–Jortner model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the Leggett–Garg inequalities and the relative entropy of coherence in the Bixon–Jortner model. First, we analytically derive the general solution of the Bixon–Jortner model by a technique of the Laplace transform. So far, only a special solution has been known for this model. The model has a single state coupled to equally spaced quasi-continuum states. These couplings cause discontinuities in the time evolution of the occupation probability of each state. Second, using the analytical solution, we show that the probability distribution of the quasi-continuum states approaches the Lorentzian function in a period of time between the initial time and the first discontinuity. Third, we examine violation of the Leggett–Garg inequalities and temporal variation of the relative entropy of coherence in the model. We prove that both the inequalities and the relative entropy are invariant under transformations of the energy-level detuning of the single state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bixon, J. Jortner, J. Chem. Phys. 48, 715 (1968)

    Article  ADS  Google Scholar 

  2. R. Englman, J. Jortner, Mol. Phys. 18, 145 (1970)

    Article  ADS  Google Scholar 

  3. J. Jortner, J. Chem. Phys. 64, 4860 (1976)

    Article  ADS  Google Scholar 

  4. G.C. Stey, R.W. Gibberd, Physica 60, 1 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Lefebvre, J. Savolainen, J. Chem. Phys. 60, 2509 (1974)

    Article  ADS  Google Scholar 

  6. J.J. Yeh, C.M. Bowden, J.H. Eberly, J. Chem. Phys. 76, 5936 (1982)

    Article  ADS  Google Scholar 

  7. P.W. Milonni, J.R. Ackerhalt, H.W. Galbraith, M.-L. Shih, Phys. Rev. A 28, 32 (1983)

    Article  ADS  Google Scholar 

  8. J.L. Skinner, H.C. Andersen, M.D. Fayer, Phys. Rev. A 24, 1994 (1981)

    Google Scholar 

  9. S. Bar-Ad, P. Kner, M.V. Marquezini, S. Mukamel, D.S. Chemla, Phys. Rev. Lett. 78, 1363 (1997)

    Article  ADS  Google Scholar 

  10. S. Santra, B. Cruikshank, R. Balu, K. Jacobs, J. Phys. A: Math. Theor. 50, 415302 (2017)

    Article  Google Scholar 

  11. P.M. Radmore, S. Tarzi, P.L. Knight, J. Mod. Opt. 34, 587 (1987)

    Article  ADS  Google Scholar 

  12. S. Tarzi, P.M. Radmore, Phys. Rev. A 37, 4734 (1988)

    Article  ADS  Google Scholar 

  13. S. Tarzi, P.M. Radmore, S.M. Barnett, J. Phys. B: At. Mol. Opt. Phys. 22, 2935 (1989)

    Article  ADS  Google Scholar 

  14. P.M. Radmore, J. Mod. Opt. 42, 579 (1995)

    Article  ADS  Google Scholar 

  15. S.M. Barnett, P.M. Radmore,Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997)

  16. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  Google Scholar 

  18. A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A.N. Korotkov, Nat. Phys. 6, 442 (2010)

    Article  Google Scholar 

  19. M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. O’Brien, A.G. White, G.J. Pryde, Proc. Natl. Acad. Sci. U.S.A. 108, 1256 (2011)

    Article  ADS  Google Scholar 

  20. G.C. Knee, S. Simmons, E.M. Gauger, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, K.M. Itoh, M.L.W. Thewalt, G.A.D. Briggs, S.C. Benjamin, Nat. Commun. 3, 606 (2012)

    Article  ADS  Google Scholar 

  21. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  22. Y.-R. Zhang, L.-H. Shao, Y. Li, H. Fan, Phys. Rev. A 93, 012334 (2016)

    Article  ADS  Google Scholar 

  23. A. Friedenberger, E. Lutz, Phys. Rev. A 95, 022101 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Azuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuma, H., Ban, M. The Leggett–Garg inequalities and the relative entropy of coherence in the Bixon–Jortner model. Eur. Phys. J. D 72, 187 (2018). https://doi.org/10.1140/epjd/e2018-90275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90275-7

Keywords

Navigation