Skip to main content
Log in

Phase and amplitude control of microwave pulse in a linear array of superconducting artificial atoms

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Based on phase controlled electromagnetically induced transparency, we propose a scheme for coherent control and storage of a microwave pulse in a linear array of artificial atoms. In particular, we consider the effects of the amplitude and phase of the fields driving the superconducting artificial atoms attached to a one-dimensional transmission line on the storage of a microwave pulse. We show that controlling the relative-phase of the microwave fields coupling the artificial atoms in a three-level Δ-configuration can yield tunable transparency window, which allows the propagation of a microwave pulse. The amplitude-control of the lower-levels coupling field adds a gain signature to the transparency window. Our results show that the absorption of the probe microwave pulse is suppressed and it gets amplified while propagating through an array of artificial atoms. The group velocity of the probe pulse is considerably reduced as a result atoms in a linear array act as coherent microwave memories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Gu, A.F. Kockum, A. Miranowicz, Y. Xi Liu, F. Nori, Phys. Rep. 718-719, 1 (2017)

    Article  ADS  Google Scholar 

  2. A.A. Abdumalikov Jr., O. Astafiev, A.M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 104, 193601 (2010)

    Article  ADS  Google Scholar 

  3. M. Marthaler, Y. Utsumi, D.S. Golubev, A. Shnirman, G. Schön, Phys. Rev. Lett. 107, 093901 (2011)

    Article  ADS  Google Scholar 

  4. G.L. Cheng, Y.P. Weng, W.X. Zhong, A.X. Chen, Ann. Phys. 353, 64 (2015)

    Article  ADS  Google Scholar 

  5. W.R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T.A. Ohki, Phys. Rev. Lett. 104, 163601 (2010)

    Article  ADS  Google Scholar 

  6. X.Y. Lu, Z.L. Xiang, W. Cui, J.Q. You, F. Nori, Phys. Rev. A 88, 012329 (2013)

    Article  ADS  Google Scholar 

  7. M. Reagor et al., Phys. Rev. B 94, 014506 (2016)

    Article  ADS  Google Scholar 

  8. A. Megrant et al., Appl. Phys. Lett. 100, 113510 (2012)

    Article  ADS  Google Scholar 

  9. P. Rabl et al., Phys. Rev. Lett. 97, 033003 (2006)

    Article  ADS  Google Scholar 

  10. D.I. Schuster et al., Phys. Rev. Lett. 105, 140501 (2010)

    Article  ADS  Google Scholar 

  11. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

  12. J.T. Shen, M.L. Povinelli, S. Sandhu, S. Fan, Phys. Rev. B 75, 035320 (2007)

    Article  ADS  Google Scholar 

  13. P.M. Leung , B.C. Sanders, Phys. Rev. Lett. 109, 253603 (2012)

    Article  ADS  Google Scholar 

  14. M.Q. Ayaz, M. Waqas, S. Qamar, S. Qamar, Phys. Rev. A 97, 022318 (2018)

    Article  ADS  Google Scholar 

  15. J. Joo, J. Bourassa, A. Blais, B.C. Sanders, Phys. Rev. Lett. 105, 073601 (2010)

    Article  ADS  Google Scholar 

  16. I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  17. Y. Nakamura, Yu. A. Pashkin, J.S. Tsai, Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  18. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  19. V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Science 326, 113 (2009)

    Article  ADS  Google Scholar 

  20. V.E. Manucharyan, Ph.D Thesis, Yale University, 2012

  21. M. Manjappa, S.S. Undurti, A. Karigowda, A. Narayanan, B.C. Sanders, Phys. Rev. A 90, 043859 (2014)

    Article  ADS  Google Scholar 

  22. O. Astafiev et al., Science 327, 840 (2010)

    Article  ADS  Google Scholar 

  23. H. Lu, X. Liu, D. Mao, Phys. Rev. A 85, 053803 (2012)

    Article  ADS  Google Scholar 

  24. P. Lambropoulos, D. Petrosyan,Fundamentals of quantum optics and quantuminformation (Springer-Verlag, Berlin, 2006)

  25. C.M. Wilson et al., Nature (Lond.) 479, 376 (2011)

    Article  ADS  Google Scholar 

  26. A. Eilam, A.D. Wilson-Gordon, H. Friedmann, Opt. Lett. 34, 1834 (2009)

    Article  ADS  Google Scholar 

  27. H. Li et al., Phys. Rev. A 80, 023820 (2009)

    Article  ADS  Google Scholar 

  28. D. Schraft, M. Hain, N. Lorenz, T. Halfmann, Phys. Rev. Lett. 116, 073602 (2016)

    Article  ADS  Google Scholar 

  29. V.E. Manucharyan, N A. Masluk, A. Kamal, J. Koch, L.I. Glazman, M.H. Devoret, Phys. Rev. B 85, 024521 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Qamar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, M.Q., Qamar, S. & Qamar, S. Phase and amplitude control of microwave pulse in a linear array of superconducting artificial atoms. Eur. Phys. J. D 72, 181 (2018). https://doi.org/10.1140/epjd/e2018-90202-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90202-0

Keywords

Navigation