Skip to main content
Log in

Applications of Picard and Magnus expansions to the Rabi model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We apply the Picard and Magnus expansions to both the semiclassical and the quantum Rabi model, with a switchable matter-field coupling. The case of the quantum Rabi model is a paradigmatic example of finite-time quantum electrodynamics (QED), and in this case we build an intuitive diagrammatic representation of the Picard series. In particular, we show that regular oscillations in the mean number of photons, ascribed to the dynamical Casimir effect (DCE) for the generation of photons and to the anti-DCE for their destruction, take place at twice the resonator frequency ω. Such oscillations, which are a clear dynamical “smoking gun” of the DCE and become clearly visible when the interaction strength enters ultrastrong coupling (USC) regime, can be predicted by first-order Picard expansion. We also show that the Magnus expansion can be used, through concatenation, as an efficient numerical integrator for both the semiclassical and the quantum Rabi model. In the first case, we find distinctive features in the Fourier spectrum of motion, with a single peak at the Rabi frequency Ω and doublets at frequencies 2 ± Ω, with n positive integer. We explain these doublets, which are a feature beyond the rotating wave approximation (RWA), on the basis of the Picard series.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourassa, J.M. Gambetta, A.A. Abdumalikov, Jr., O. Astafiev, Y. Nakamura, A. Blais, Phys. Rev. A 80, 032109 (2009)

    Article  ADS  Google Scholar 

  2. T. Niemczyk, F. Deppe, H. Huebl, E. Menzel, F. Hocke, M.J. Schwarz, J.J. García-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  3. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  4. P. Forn-Díaz, J.J. García-Ripoll, B. Peropadre, J.-L. Orgiazzi, M.A. Yurtalan, R. Belyansky, C.M. Wilson, A. Lupascu, Nat. Phys. 13, 39 (2017)

    Article  Google Scholar 

  5. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Nat. Phys. 13, 44 (2017)

    Article  Google Scholar 

  6. D. Markovič, S. Jezouin, Q. Ficheux, S. Fedortchenko, S. Felicetti, T. Coudreau, P. Milman, Z. Leghtas, B. Huard, Phys. Rev. Lett. 121, 040505 (2018)

    Article  ADS  Google Scholar 

  7. G.T. Moore, J. Math. Phys. (N.Y.) 11, 2679 (1970)

    Article  ADS  Google Scholar 

  8. S. De Liberato, D. Gerace, I. Carusotto, C. Ciuti, Phys. Rev. A 80, 053810 (2009)

    Article  ADS  Google Scholar 

  9. V.V. Dodonov, Phys. Scripta 82, 038105 (2010)

    Article  ADS  Google Scholar 

  10. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Rev. Mod. Phys. 84, 1 (2012)

    Article  ADS  Google Scholar 

  11. J.-C. Jaskula, G.B. Partridge, M. Bonneau, R. Lopes, J. Ruaudel, D. Boiron, C. I. Westbrook, Phys. Rev. Lett. 109, 220401 (2012)

    Article  ADS  Google Scholar 

  12. S. Koghee, M. Wouters, Phys. Rev. Lett. 112, 036406 (2014)

    Article  ADS  Google Scholar 

  13. S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson, P. Delsing, E. Solano, Phys. Rev. Lett. 113, 093602 (2014)

    Article  ADS  Google Scholar 

  14. C. Sabín, I. Fuentes, G. Johansson, Phys. Rev. A 92, 012314 (2015)

    Article  ADS  Google Scholar 

  15. C. Sabín, G. Adesso, Phys. Rev. A 92, 042107 (2015)

    Article  ADS  Google Scholar 

  16. R. Stassi, S. De Liberato, L. Garziano, B. Spagnolo, S. Savasta, Phys. Rev. A 92, 013830 (2015)

    Article  ADS  Google Scholar 

  17. G. Benenti, S. Siccardi, G. Strini, Eur. Phys. J. D 68, 139 (2014)

    Article  ADS  Google Scholar 

  18. G. Benenti, A. D’Arrigo, S. Siccardi, G. Strini, Phys. Rev. A 90, 052313 (2014)

    Article  ADS  Google Scholar 

  19. G. Benenti, G. Strini, Phys. Rev. A 91, 020502(R) (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Hoeb, F. Angaroni, J. Zoller, T. Calarco, G. Strini, S. Montangero, G. Benenti, Phys. Rev. A 96, 033851 (2017)

    Article  ADS  Google Scholar 

  21. C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Nature (London) 479, 376 (2011)

    Article  ADS  Google Scholar 

  22. P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, PNAS 110, 4234 (2013)

    Article  ADS  Google Scholar 

  23. K. Nomoto, R. Fukuda, Progr. Theor. Phys. 86, 269 (1991)

    Article  ADS  Google Scholar 

  24. P. Meystre, M. Sargent III,Elements of quantum optics, 4th Ed. (Springer–Verlag, Berlin, 2007)

  25. D. Braak, Q.-H. Chen, M.T. Batchelor, E. Solano, J. Phys. A 49, 300301 (2016)

    Article  MathSciNet  Google Scholar 

  26. I.M. de Sousa, A.V. Dodonov, J. Phys. A: Math. Theor. 48, 245302 (2015)

    Article  ADS  Google Scholar 

  27. D.S. Veloso, A.V. Dodonov, J. Phys. B 48, 165503 (2015)

    Article  ADS  Google Scholar 

  28. A. Motazedifard, M.H. Naderi, R. Roknizadeh, J. Opt. Soc. Am. B 32, 1555 (2015)

    Article  ADS  Google Scholar 

  29. S. Blanes, F. Casas, J.A. Oteo, J. Ros, Phys. Rep. 470, 151 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. P.C. Moan, J. Niesen, J. Found. Comp. Math. 8, 291 (2008)

    Article  Google Scholar 

  31. F. Casas, J. Phys. A 40, 15001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. N.W. McLachlan,Theory and Applications of Mathieu Functions (Dover Publications, New York, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Benenti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angaroni, F., Benenti, G. & Strini, G. Applications of Picard and Magnus expansions to the Rabi model. Eur. Phys. J. D 72, 188 (2018). https://doi.org/10.1140/epjd/e2018-90190-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90190-y

Keywords

Navigation