Helium nanodroplets doped with copper and water

Abstract

Copper nanoparticles are promising, low-cost candidates for the catalytic splitting of water and production of hydrogen gas. The present gas-phase study, based on the synthesis of copper-water complexes in ultracold helium nanodroplets followed by electron ionization, attempts to find evidence for dissociative water adsorption and H2 formation. Mass spectra show that H2O–Cu complexes containing dozens of copper and water molecules can be formed in the helium droplets. However, ions that would signal the production and escape of H2, such as (H2O)n−2(OH)2Cum+ or the isobaric (H2O)n−1OCum+, could not be detected. We do observe an interesting anomaly though: While the abundance of stoichiometric (H2O)nCum+ ions generally exceeds that of protonated or dehydrogenated ions, the trend is reversed for (H2O)OHCu2+ and (H2O)2OHCu2+; these ions are more abundant than (H2O)2Cu2+ and (H2O)3Cu2+, respectively. Moreover, (H2O)2OHCu2+ is much more abundant than other ions in the (H2O)n−1OHCu2+ series. A byproduct of our experiment is the observation of enhanced stability of He6Cu+, He12Cu+, He24Cu+, and He2Cu2+.

Graphical abstract

References

  1. 1.

    Z.X. Yang, L.G. Xie, D.W. Ma, G.T. Wang, J. Phys. Chem. C 115, 6730 (2011)

    Article  Google Scholar 

  2. 2.

    J. Xiong, X.D. Wu, Q.J. Xue, J. Colloid Interface Sci. 390, 41 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    N.K. Das, S. Ghosh, A. Priya, S. Datta, S. Mukherjee, J. Phys. Chem. C 119, 24657 (2015)

    Article  Google Scholar 

  4. 4.

    T. Kruk, K. Szczepanowicz, J. Stefanska, R.P. Socha, P. Warszynski, Colloids Surf. B-Biointerfaces 128, 17 (2015)

    Article  Google Scholar 

  5. 5.

    Z.K. He, J.W. Fu, B. Cheng, J.G. Yu, S.W. Cao, Appl. Catal. B-Environ. 205, 104 (2017)

    Article  Google Scholar 

  6. 6.

    Y.P. Liu et al., Adv. Mater. 29 (2017)

  7. 7.

    G. Hultquist, M.J. Graham, O. Kodra, S. Moisa, R. Liu, U. Bexell, J.L. Smialek, Corros. Sci. 95, 162 (2015)

    Article  Google Scholar 

  8. 8.

    A.J. Johansson, C. Lilja, T. Brinck, J. Chem. Phys. 135, 084709 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    C.M. Lousada, A.J. Johansson, P.A. Korzhavyi, J. Phys. Chem. C 119, 14102 (2015)

    Article  Google Scholar 

  10. 10.

    K. Andersson, G. Ketteler, H. Bluhm, S. Yamamoto, H. Ogasawara, L.G.M. Pettersson, M. Salmeron, A. Nilsson, J. Am. Chem. Soc. 130, 2793 (2008)

    Article  Google Scholar 

  11. 11.

    P. Kappen, J.D. Grunwaldt, B.S. Hammershoi, L. Troger, B.S. Clausen, J. Catal. 198, 56 (2001)

    Article  Google Scholar 

  12. 12.

    M. Estrella et al., J. Phys. Chem. C 113, 14411 (2009)

    Article  Google Scholar 

  13. 13.

    S. Huseyinova, J. Blanco, F.G. Requejo, J.M. Ramallo-Lopez, M.C. Blanco, D. Buceta, M.A. Lopez-Quintela, J. Phys. Chem. C 120, 15902 (2016)

    Article  Google Scholar 

  14. 14.

    L. Chen et al., Phys. Chem. Chem. Phys. 12, 9845 (2010)

    Article  Google Scholar 

  15. 15.

    J.H. Stenlid, A.J. Johansson, T. Brinck, Phys. Chem. Chem. Phys. 16, 2452 (2014)

    Article  Google Scholar 

  16. 16.

    J.H. Stenlid, A.J. Johansson, L. Kloo, T. Brinck, J. Phys. Chem. C 120, 1977 (2016)

    Article  Google Scholar 

  17. 17.

    M.L. Jiang, Q. Zeng, T.T. Zhang, M.L. Yang, K.A. Jackson, J. Chem. Phys. 136, 104501 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    P.M. Holland, A.W. Castleman, J. Chem. Phys. 76, 4195 (1982)

    ADS  Article  Google Scholar 

  19. 19.

    T.F. Magnera, D.E. David, D. Stulik, R.G. Orth, H.T. Jonkman, J. Michl, J. Am. Chem. Soc. 111, 5036 (1989)

    Article  Google Scholar 

  20. 20.

    N.F. Dalleska, K. Honma, L.S. Sunderlin, P.B. Armentrout, J. Am. Chem. Soc. 116, 3519 (1994)

    Article  Google Scholar 

  21. 21.

    P.J.E. Boussard, P.E.M. Siegbahn, M. Svensson, Chem. Phys. Lett. 231, 337 (1994)

    ADS  Article  Google Scholar 

  22. 22.

    A.M. El-Nahas, N. Tajima, K. Hirao, J. Mol. Struct. THEOCHEM 469, 201 (1999)

    Article  Google Scholar 

  23. 23.

    D. Feller, E.D. Glendening, W.A. de Jong, J. Chem. Phys. 110, 1475 (1999)

    ADS  Article  Google Scholar 

  24. 24.

    H.M. Lee, S.K. Min, E.C. Lee, J.H. Min, S. Odde, K.S. Kim, J. Chem. Phys. 122, 064314 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    J.D. Herr, R.P. Steele, J. Phys. Chem. A 120, 10252 (2016)

    Article  Google Scholar 

  26. 26.

    T. Iino, K. Ohashi, Y. Mune, Y. Inokuchi, K. Judai, N. Nishi, H. Sekiya, Chem. Phys. Lett. 427, 24 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    T. Iino, K. Ohashi, K. Inoue, K. Judai, N. Nishi, H. Sekiya, J. Chem. Phys. 126, 194302 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    P.D. Carnegie, A.B. McCoy, M.A. Duncan, J. Phys. Chem. A 113, 4849 (2009)

    Article  Google Scholar 

  29. 29.

    B.M. Marsh, J. Zhou, E. Garand, J. Phys. Chem. A 118, 2063 (2014)

    Article  Google Scholar 

  30. 30.

    B.M. Marsh, J. Zhou, E. Garand, Phys. Chem. Chem. Phys. 17, 25786 (2015)

    Article  Google Scholar 

  31. 31.

    A.F. Sweeney, J.T. O’Brien, E.R. Williams, P.B. Armentrout, Int. J. Mass Spectrom. 378, 270 (2015)

    Article  Google Scholar 

  32. 32.

    A.F. Sweeney, P.B. Armentrout, J. Phys. Chem. A 118, 10210 (2014)

    Article  Google Scholar 

  33. 33.

    V.A. Mikhailov, P.E. Barran, A.J. Stace, Phys. Chem. Chem. Phys. 1, 3461 (1999)

    Article  Google Scholar 

  34. 34.

    G.E. Froudakis, M. Muhlhauser, S.C. Farantos, A. Sfounis, M. Velegrakis, Chem. Phys. 280, 43 (2002)

    Article  Google Scholar 

  35. 35.

    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    H. Schöbel, P. Bartl, C. Leidlmair, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Eur. Phys. J. D 63, 209 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    S. Ralser, J. Postler, M. Harnisch, A.M. Ellis, P. Scheier, Int. J. Mass Spectrom. 379, 194 (2015)

    Article  Google Scholar 

  38. 38.

    A. Mauracher, M. Daxner, J. Postler, S.E. Huber, S. Denifl, P. Scheier, J.P. Toennies, J. Phys. Chem. Lett. 5, 2444 (2014)

    Article  Google Scholar 

  39. 39.

    O. Echt, D. Kreisle, M. Knapp, E. Recknagel, Chem. Phys. Lett. 108, 401 (1984)

    ADS  Article  Google Scholar 

  40. 40.

    S. Denifl et al., J. Chem. Phys. 132, 234307 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lutzenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001)

    ADS  Article  Google Scholar 

  42. 42.

    C.E. Klots et al., Z. Phys. D 21, 335 (1991)

    ADS  Article  Google Scholar 

  43. 43.

    K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999)

    ADS  Article  Google Scholar 

  44. 44.

    L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, P. Scheier, Chem. Eur. J. 18, 4411 (2012)

    Article  Google Scholar 

  45. 45.

    P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, J. Phys. Chem. A 118, 8050 (2014)

    Article  Google Scholar 

  46. 46.

    T. Döppner, T. Diederich, S. Gode, A. Przystawik, J. Tiggesbäumker, K.H. Meiwes-Broer, J. Chem. Phys. 126, 244513 (2007)

    ADS  Article  Google Scholar 

  47. 47.

    M. Goulart et al., Phys. Chem. Chem. Phys. 20, 9554 (2018)

    Article  Google Scholar 

  48. 48.

    F. Tramonto, P. Salvestrini, M. Nava, D.E. Galli, J. Low Temp. Phys. 180, 29 (2015)

    ADS  Article  Google Scholar 

  49. 49.

    D. Prekas, C. Lüder, M. Velegrakis, J. Chem. Phys. 108, 4450 (1998)

    ADS  Article  Google Scholar 

  50. 50.

    A. Yousef, S. Shrestha, L.A. Viehland, E.P.F. Lee, B.R. Gray, V.L. Ayles, T.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 154309 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    X.F. Tong, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, J. Chem. Phys. 134, 024306 (2011)

    ADS  Article  Google Scholar 

  52. 52.

    X.Y. Li, X.Y. Cheng, X. Cao, Struct. Chem. 23, 1831 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Austrian Science Fund (FWF).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Paul Scheier or Olof Echt.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raggl, S., Gitzl, N., Martini, P. et al. Helium nanodroplets doped with copper and water. Eur. Phys. J. D 72, 130 (2018). https://doi.org/10.1140/epjd/e2018-90150-7

Download citation