Skip to main content
Log in

Formation of enhanced opposite one-handed chiral fields in heterodimer-film nanostructures

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Plasmonic chirality has attracted a lot of interests because it could result in dramatically increased chiroptical interactions and offer many potential applications in chiral molecules analysis, catalysis, and other nanotechnology. In particular, one-handed chiral field is required in many applications for the reason that molecules are generally distributed randomly in some region of structures. In this work, benefiting from the coupling effect and energy focusing effect, we propose a heterodimer-film nanostructure to achieve one-handed chiral fields under linearly polarized light illumination. The results indicate that there are just opposite one-handed chiral fields in different gaps of the heterodimer-film nanostructure. The volume averaged optical chirality in the gaps can reach 102 and the optical chirality of hot spots can reach 103, which has potential applications in chiral sensing and Raman optical activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Collins et al., Adv. Opt. Mater. 5, 1700182 (2017)

    Article  Google Scholar 

  2. K.W. Smith, S. Link, W.-S. Chang, J. Photochem. Photobiol. C 32, 40 (2017)

    Article  Google Scholar 

  3. V.K. Valev, A.O. Govorov, J. Pendry, Adv. Opt. Mater. 5, 1700501 (2017)

    Article  Google Scholar 

  4. A. Kuzyk et al., Nature 483, 311 (2012)

    Article  ADS  Google Scholar 

  5. P. Yu et al., Light Sci. Appl. 5, e16096 (2016)

    Article  Google Scholar 

  6. A. Ben-Moshe et al., Chem. Soc. Rev. 42, 7028 (2013)

    Article  Google Scholar 

  7. J. Govan, Y.K. Gun’ko, Nanoscience 3, 1 (2016)

    Article  Google Scholar 

  8. J.M. Slocik, A.O. Govorov, R.R. Naik, Nano Lett. 11, 701 (2011)

    Article  ADS  Google Scholar 

  9. Z. Fan, A.O. Govorov, Nano Lett. 12, 3283 (2012)

    Article  ADS  Google Scholar 

  10. B. Auguieì et al., J. Phys. Chem. Lett. 2, 846 (2011)

    Article  Google Scholar 

  11. M. Hentschel et al., Nano Lett. 12, 2542 (2012)

    Article  ADS  Google Scholar 

  12. Z. Fan, A.O. Govorov, Nano Lett. 10, 2580 (2010)

    Article  ADS  Google Scholar 

  13. H. Zhang, A.O. Govorov, Phys. Rev. B 87, 075410 (2013)

    Article  ADS  Google Scholar 

  14. M. Kuwata-Gonokami et al., Phys. Rev. Lett. 95, 227401 (2005)

    Article  ADS  Google Scholar 

  15. T. Vallius et al., Appl. Phys. Lett. 83, 234 (2003)

    Article  ADS  Google Scholar 

  16. T. Li et al., Appl. Phys. Lett. 93, 021110 (2008)

    Article  ADS  Google Scholar 

  17. T. Narushima, H. Okamoto, Phys. Chem. Chem. Phys. 15, 13805 (2013)

    Article  Google Scholar 

  18. J. Kaschke, M. Wegener, Opt. Lett. 40, 3986 (2015)

    Article  ADS  Google Scholar 

  19. M. Esposito et al., ACS Photonics 2, 105 (2015)

    Article  Google Scholar 

  20. M. Schäferling et al., ACS Photonics 1, 530 (2014)

    Article  Google Scholar 

  21. E. Plum et al., Phys. Rev. Lett. 102, 113902 (2009)

    Article  ADS  Google Scholar 

  22. L. Hu et al., Nanoscale 8, 3720 (2016)

    Article  ADS  Google Scholar 

  23. C. Kramer et al., ACS Photonics 4, 396 (2017)

    Article  Google Scholar 

  24. L. Kang, Q. Ren, D.H. Werner, ACS Photonics 4, 1298 (2017)

    Article  Google Scholar 

  25. T.J. Davis, E. Hendry, Phys. Rev. B 87, 085405 (2013)

    Article  ADS  Google Scholar 

  26. A. Canaguier-Durand, C. Genet, Phys. Rev. A 90, 023842 (2014)

    Article  ADS  Google Scholar 

  27. M. Schäferling et al., Phys. Rev. X 2, 031010 (2012)

    Google Scholar 

  28. M. Schäferling et al., Opt. Express 24, 26326 (2012)

    Article  ADS  Google Scholar 

  29. M. Schäferling et al., ACS Photonics 3, 1076 (2016)

    Article  Google Scholar 

  30. X. Tian, Y. Fang, M. Sun, Sci. Rep. 5, 17534 (2015)

    Article  ADS  Google Scholar 

  31. Y. Fang, Y. Huang, Appl. Phys. Lett. 102, 153108 (2013)

    Article  ADS  Google Scholar 

  32. T. Liu et al., J. Phys. Chem. C 120, 7778 (2016)

    Article  Google Scholar 

  33. Y. Tang, A.E. Cohen, Phys. Rev. Lett. 104 (2010)

  34. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Dai, H., Xi, F. et al. Formation of enhanced opposite one-handed chiral fields in heterodimer-film nanostructures. Eur. Phys. J. D 72, 201 (2018). https://doi.org/10.1140/epjd/e2018-90130-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90130-y

Keywords

Navigation