Simple scheme to implement decoy-state reference-frame-independent quantum key distribution

Regular Article
  • 12 Downloads

Abstract

We propose a simple scheme to implement decoy-state reference-frame-independent quantum key distribution (RFI-QKD), where signal states are prepared in Z, X, and Y bases, decoy states are prepared in X and Y bases, and vacuum states are set to no bases. Different from the original decoy-state RFI-QKD scheme whose decoy states are prepared in Z, X and Y bases, in our scheme decoy states are only prepared in X and Y bases, which avoids the redundancy of decoy states in Z basis, saves the random number consumption, simplifies the encoding device of practical RFI-QKD systems, and makes the most of the finite pulses in a short time. Numerical simulations show that, considering the finite size effect with reasonable number of pulses in practical scenarios, our simple decoy-state RFI-QKD scheme exhibits at least comparable or even better performance than that of the original decoy-state RFI-QKD scheme. Especially, in terms of the resistance to the relative rotation of reference frames, our proposed scheme behaves much better than the original scheme, which has great potential to be adopted in current QKD systems.

Graphical abstract

References

  1. 1.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York (1984), p. 175 Google Scholar
  2. 2.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Zhao, B. Qi, X. Ma, H.-K. Lo, L. Qian, Phys. Rev. Lett. 96, 070502 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, J.-W. Pan, Phys. Rev. Lett. 98, 010505 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    D. Rosenberg, J.W. Harrington, P.R. Rice, P.A. Hiskett, C.G. Peterson, R.J. Hughes, A.E. Lita, S.W. Nam, J.E. Nordholt, Phys. Rev. Lett. 98, 010503 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Z.L. Yuan, A.W. Sharpe, A.J. Shields, Appl. Phys. Lett. 90, 011118 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M.J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan, Phys. Rev. Lett. 117, 190501 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, H.-K. Lo, Phys. Rev. Lett. 112, 190503 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. Dynes, A. Dixon, A. Sharpe, Z. Yuan, A. Shields, S. Uchikoga, M. Legr, S. Robyr, P. Trinkler, L. Monat, J. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, Opt. Express. 19, 10387 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han, Opt. Express 22, 21739 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, H. Zbinden, New. J. Phys. 13, 123001 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, J.-W. Pan, IEEE J. Sel. Top. Quantum Electron. 21, 6600407 (2015) Google Scholar
  13. 13.
    A. Laing, V. Scarani, J. G. Rarity, J. L. OBrien, Phys. Rev. A 82, 012304 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    J. Wabnig, D. Bitauld, H.W. Li, A. Laing, J.L. O’Brien, A.O. Niskanen, New. J. Phys. 15, 073001 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R.W. Nock, J. Munns, D. Bonneau, P. Jiang, H.W. Li, A. Laing, J.G. Rarity, A.O. Niskanen, M.G. Thompson, J.L. O’Brien, Phys. Rev. Lett. 112, 130501 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    W.-Y. Liang, S. Wang, H.-W. Li, Z.-Q. Yin, W. Chen, Y. Yao, J.-Z. Huang, G.-C. Guo, Z.-F. Han, Sci. Rep. 4, 03617 (2014) CrossRefGoogle Scholar
  17. 17.
    Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, Z.-F. Han, Quantum Inf. Process. 13, 1237 (2014) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, Z.-F. Han, Phys. Rev. Lett. 115, 160502 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    C. Wang, S-H. Sun, X-C. Ma, G-Z. Tang, L-M. Liang, Phys. Rev. A 92, 042319 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    F. Wang, P. Zhang, X. Wang, F. Li, Phys. Rev. A 94, 062330 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    C.-M. Zhang, J.-R. Zhu, Q. Wang, Phys. Rev. A 95, 032309 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han, Optica 4, 1016 (2017) CrossRefGoogle Scholar
  23. 23.
    X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    H.-K. Lo, X. Ma, K. Chen, Phys. Rev. Lett. 94, 230504 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    B. Huttner, N. Imoto, N. Gisin, T. Mor, Phys. Rev. A. 51, 1863 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, X. Ma, Sci. Rep. 3, 2453 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    Y.-H. Zhou, Z.-W. Yu, X.-B. Wang, Phys. Rev. A 93, 042324 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 75, 012312 (2007) CrossRefGoogle Scholar
  30. 30.
    X. Ma, C.-H.F. Fung, M. Razavi, Phys. Rev. A 86, 052305 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    M. Curty, F. Xu, W. Cui, C.C.W. Lim, K. Tamaki, H.-K. Lo, Nat. Commun. 5, 3732 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    L. Sheridan, T.P. Le, V. Scarani, New J. Phys. 12, 123019 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    F. Xu, H. Xu, H.-K. Lo, Phys. Rev. A 89, 052333 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Quantum Information and Technology, Nanjing University of Posts and TelecommunicationsNanjingP.R. China
  2. 2.Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of EducationNanjingP.R. China

Personalised recommendations