Localisation transition in the driven Aubry-André model


A recent experiment by Bordia et al. [P. Bordia et al., Nat. Phys. 13, 5 (2017)] has demonstrated that periodically modulating the potential of a localised many-body quantum system described by the Aubry-André Hamiltonian with on-site interactions can lead to a many-body localisation-delocalisation transition, provided the modulation amplitude is big enough. Here, we consider the noninteracting counterpart of that model in order to explore its phase diagram as a function of the strength of the disordered potential, the driving frequency and its amplitude. We will first of all mimic the experimental procedure of Bordia et al. and use the even-odd sites imbalance as a parameter in order to discern between different phases. Then we compute the Floquet eigenstates and relate the localisation-delocalisation transition to their IPR. Both these approaches show that the delocalisation transition occurs for frequencies that are low compared to the bandwidth of the time independent model. Moreover, in agreement with [P. Bordia et al., Nat. Phys. 13, 5 (2017)] there is an amplitude threshold below which no delocalisation transition occurs. We estimate both the critical values for the frequency and the amplitude.

Graphical abstract


  1. 1.

    J.H. Shirley, Phys. Rev. 138, B979 (1965)

    ADS  Article  Google Scholar 

  2. 2.

    H. Sambe, Phys. Rev. A 7, 2203 (1973)

    ADS  Article  Google Scholar 

  3. 3.

    A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 34, 3625 (1986)

    ADS  Article  Google Scholar 

  5. 5.

    M. Holthaus, Phys. Rev. Lett. 69, 351 (1992)

    ADS  Article  Google Scholar 

  6. 6.

    M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    J. Zak, Phys. Rev. Lett. 71, 2623 (1993)

    ADS  Article  Google Scholar 

  9. 9.

    A. Eckardt, M. Holthaus, Europhys. Lett. 80, 50004 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    A. Eckardt, C. Weiss, M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y-A. Chen, I. Bloch, Phys. Rev. Lett. 107, 255301 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, P. Windpassinger, Phys. Rev. Lett. 108, 225304 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    N. Goldman, J. Dalibard, Phys. Rev. X 4, 031027 (2014)

    Google Scholar 

  16. 16.

    P. Bordia, H. Luschen, U. Schneider, M. Knap, I. Bloch, Nat. Phys. 13, 5 (2017)

    Article  Google Scholar 

  17. 17.

    S. Aubry, G. André, Ann. Israel Phys. Soc. 3, 18 (1980)

    Google Scholar 

  18. 18.

    V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 116, 250401 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    D.V. Else, C. Nayak, Phys. Rev. B 93, 201103 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    C.W. von Keyserlingk, S.L. Sondhi, Phys. Rev. B 93, 245145 (2016)

    ADS  Article  Google Scholar 

  21. 21.

    C.W. von Keyserlingk, S.L. Sondhi, Phys. Rev. B 93, 245146 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    A.C. Potter, T. Morimoto, A. Vishwanath, Phys. Rev. X 6, 041001 (2016)

    Google Scholar 

  23. 23.

    S. Ray, A. Ghosh, S. Sinha, Phys. Rev. E 97, 010101 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    M. Schreiber, S.S Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    E. Maciá, ISRN Condens. Matter Phys. 2014, 1 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    M.Ya. Azbel, Phys. Rev. Lett. 43, 1954 (1979)

    Google Scholar 

  27. 27.

    C. Aulbach, A. Wobst, G-L. Ingold, P. Hänggi, I. Varga, New J. Phys. 6, 70 (2004)

    ADS  Article  Google Scholar 

  28. 28.

    M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    D.C. Mattis, Rev. Mod. Phys. 58, 361 (1986)

    ADS  Article  Google Scholar 

  30. 30.

    K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J.H. Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Nature 441, 853 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    J.A. Maruhn, P.G. Reinhard, E. Suraud, Simple Models of Many-Fermion Systems (Springer, Berlin, Heidelberg, 2010)

  32. 32.

    P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Article  Google Scholar 

  33. 33.

    K. Drese, M. Holthaus, Phys. Rev. Lett. 78, 2932 (1997)

    ADS  Article  Google Scholar 

  34. 34.

    A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O, Morsch, E, Arimondo, Phys. Rev. A 79, 013611 (2009)

    ADS  Article  Google Scholar 

  35. 35.

    D. Romito, Periodic modulation of a quasicrystal, Master’s thesis, Università degli Studi di Trento, 2017

  36. 36.

    D.A. Abanin, W. De Roeck, F. Huveneers, Ann. Phys. 372, 1 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    S. Gopalakrishnan, M. Knap, E. Demler, Phys. Rev. B 94, 094201 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    J. Rehn, A. Lazarides, F. Pollmann, R. Moessner, Phys. Rev. B 94, 020201 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    V. Mastropietro, Phys. Rev. B 93, 245154 (2016)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Donato Romito.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romito, D., Lobo, C. & Recati, A. Localisation transition in the driven Aubry-André model. Eur. Phys. J. D 72, 135 (2018). https://doi.org/10.1140/epjd/e2018-90081-3

Download citation


  • Cold Matter and Quantum Gas