Skip to main content
Log in

Improving fidelity of quantum secret sharing in noisy environments

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum secret sharing is a procedure for sharing a secret among a number of participants such that only certain subsets of participants can collaboratively reconstruct it. In this paper, we review a quantum secret sharing scheme to realize a class of access structures. Based on this protocol, we give a concrete example with three participants. Since the noisy channel has a great influence on the shared quantum secret, we analyze the impacts of two kinds of noisy channels on quantum secret sharing and obtain the expression among the fidelity, noisy coefficient and shared quantum state coefficients. In order to enhance the fidelity of the shared secret, we give an optimized strategy through the concrete scheme. Furthermore, we analyze two specific cases, and we can enhance the fidelity through properly adjusting the compensation parameters. Compared with the original way, our method shows an effective influence on the quality decrease of quantum secret sharing schemes due to the entanglement decoherence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shamir, Commun. ACM 22, 612 (1979)

    Article  Google Scholar 

  2. G.R. Blakley, in Proceedings of the National Computer Conference (AFIPS, 1979), pp. 313–317

  3. M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Cleve, D. Gottesman, H.K. Lo, Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  5. D. Gottesman, Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.M. Lance, T. Symul, W.P. Bowen, B.C. Sanders, P.K. Lam, Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  7. F.G. Deng, H.Y. Zhou, G.L. Long, J. Phys. A: Math. Gen. 39, 14089 (2006)

    Article  ADS  Google Scholar 

  8. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  9. D. Dieks, Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  10. A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  11. A. Tavakoli, I. Herbauts, M. Zukowski, M. Bourennane, Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  12. V. Karimipour, M. Asoudeh, Phys. Rev. A 92, 030301 (2015)

    Article  ADS  Google Scholar 

  13. S. Lin et al., Phys. Rev. A 93, 062343 (2016)

    Article  ADS  Google Scholar 

  14. K.J. Zhang et al., Sci. China Phys. Mech. Astron. 6, 1 (2016)

    Google Scholar 

  15. G. Gordon, G. Rigolin, Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  16. H.D. Massoud, F. Elham, Sci. China Phys. Mech. Astron. 55, 1828 (2012)

    Article  ADS  Google Scholar 

  17. A. Maitra, S.J. De, G. Paul, A.K. Pal, Phys. Rev. A 92, 022305 (2015)

    Article  ADS  Google Scholar 

  18. P. Sarvepalli, R. Raussendorf, Phys. Rev. A 81, 052333 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. R.H. Shi, L.S. Huang, W. Yang, H. Zhong, Sci. China Phys. Mech. Astron. 53, 2238 (2010)

    Article  ADS  Google Scholar 

  20. C.M. Bai et al., Eur. Phys. J. D 71, 255 (2017)

    Article  ADS  Google Scholar 

  21. Z. Zhang, W. Liu, C. Li, Chin. Phys. B 20, 050309 (2011)

    Article  ADS  Google Scholar 

  22. R. Rahaman, M.G. Parker, Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  23. Y.H. Yang et al., Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  24. C.M. Bai et al., Quantum Inf. Process. 16, 59 (2017)

    Article  ADS  Google Scholar 

  25. J. Wang, L. Li, H. Peng, Y. Yang, Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  26. H. Lu et al., Phys. Rev. Lett. 117, 030501 (2016)

    Article  ADS  Google Scholar 

  27. S. Adhikari, arXiv:1011.2868 (2010)

  28. M. Ray, S. Chatterjee, I. Chakrabarty, Eur. Phys. J. D 70, 114 (2016)

    Article  ADS  Google Scholar 

  29. M. Asoudeh, V. Karimipour, arXiv:1709.09327 (2017)

  30. C.M. Bai et al., Int. J. Theor. Phys. 55, 4972 (2016)

    Article  Google Scholar 

  31. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, CM., Li, ZH. & Li, YM. Improving fidelity of quantum secret sharing in noisy environments. Eur. Phys. J. D 72, 126 (2018). https://doi.org/10.1140/epjd/e2018-90055-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90055-5

Keywords

Navigation