Compression of a mixed antiproton and electron non-neutral plasma to high densities

Abstract

We describe a multi-step “rotating wall” compression of a mixed cold antiproton–electron non-neutral plasma in a 4.46 T Penning–Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m−3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

Graphical abstract

Change history

  • 15 November 2019

    This correction provides updated acknowledgements:

  • 15 November 2019

    This correction provides updated acknowledgements:

References

  1. 1.

    M. Amoretti et al., Nature 419, 456 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002)

    ADS  Article  Google Scholar 

  3. 3.

    M. Doser et al., Class. Quantum Grav. 29, 184009 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    P. Perez, Y. Sacquin, Class. Quantum Grav. 29, 184008 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    E. Widmann et al., Hyperfine Interact. 215, 1 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    M. Ahmadi et al., Nature 541, 506 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    M. Amoretti et al., Phys. Lett. A 360, 141 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    J. Fajans et al., Phys. Rev. Lett. 95, 155001 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    X.-P. Huang et al., Phys. Rev. Lett. 78, 875 (1997)

    ADS  Article  Google Scholar 

  10. 10.

    E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    J.R. Danielson, C.M. Surko, T.M. O’Neil, Phys. Rev. Lett. 99, 135005 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    G.B. Andresen et al., Phys. Rev. Lett. 100, 203401 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    D. Krasnický et al., AIP Conf. Proc. 1521, 144 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    B.R. Beck, J. Fajans, J.H. Malmberg, Phys. Plasmas 3, 1250 (1996)

    ADS  Article  Google Scholar 

  15. 15.

    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    T.M. O’Neil, Phys. Fluids 24, 1447 (1981)

    ADS  Article  Google Scholar 

  17. 17.

    B.M. Jelenković et al., Phys. Rev. A 67, 063406 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    G. Gabrielse et al., Phys. Rev. Lett. 105, 213002 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    R.L. Spencer, S.N. Rasband, R.R. Vanfleet, Phys. Fluids B 5, 4267 (1993)

    ADS  Article  Google Scholar 

  20. 20.

    J.R. Danielson, C.M. Surko, Phys. Rev. Lett. 94, 035001 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    B.P. Cluggish, J.R. Danielson, C.F. Driscoll, Phys. Rev. Lett. 81, 353 (1998)

    ADS  Article  Google Scholar 

  22. 22.

    G.B. Andresen et al., Phys. Rev. Lett. 106, 145001 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    D.H.E. Dubin, AIP Conf. Proc. 1521, 26 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    A.A. Kabantsev, K.A. Thompson, C.F. Driscoll, AIP Conf. Proc. 1928, 020008 (2018)

    Article  Google Scholar 

  25. 25.

    M. Amoretti et al., Phys. Plasmas 13, 012308 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    A.A. Kabantsev, C.Y. Chim, T.M. O’Neil, C.F. Driscoll, Phys. Rev. Lett. 112, 115003 (2014)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Krasnický.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aghion, S., Amsler, C., Bonomi, G. et al. Compression of a mixed antiproton and electron non-neutral plasma to high densities. Eur. Phys. J. D 72, 76 (2018). https://doi.org/10.1140/epjd/e2018-80617-x

Download citation

Keywords

  • Plasma Physics