Phase transitions and spin excitations of spin-1 bosons in optical lattice

Regular Article
  • 16 Downloads

Abstract

For spin-1 bosonic system trapped in optical lattice, we investigate two main problems, including MI-SF phase transition and magnetic phase separations in MI phase, with extended standard basis operator (SBO) method. For both ferromagnetic (U2 < 0) and antiferromagnetic (U2 > 0) systems, we analytically figure out the symmetry properties in Mott-insulator and superfluid phases, which would provide a deeper insight into the MI-SF phase transition process. Then by applying self-consistent approach to the method, we include the effect of quantum and thermal fluctuations and derive the MI-SF transition phase diagram, which is in quantitative agreement with recent Monte-Carlo simulation at zero temperature, and at finite temperature, we find the underestimation of finite-temperature-effect in the mean-field approximation method. If we further consider the spin excitations in the insulating states of spin-1 system in external field, distinct spin phases are expected. Therefore, in the Mott lobes with n = 1 and n = 2 atoms per site, we give analytical and numerical boundaries of the singlet, nematic, partially magnetic and ferromagnetic phases in the magnetic phase diagrams.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    R. Jördens et al., Phys. Rev. Lett. 104, 180401 (2010) CrossRefGoogle Scholar
  5. 5.
    P. Medley, D.M. Weld, H. Miyake, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 106, 195301 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    J. Jiang, L. Zhao, S.-T. Wang, Z. Chen, T. Tang, L.-M. Duan, Y. Liu, Phys. Rev. A 93, 063607 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Stamper-Kurn, M. Ueda, Rev. Mod. Phys. 85, 1191 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 4531 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Matthews, D.S. Hall, D.S. Jin, J.R. Ensher, C.E. Wieman, E.A. Cornell, F. Dalfovo, C. Minniti, S. Stringari, Phys. Rev. Lett. 81, 243 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, I. Bloch, Phys. Rev. Lett. 95, 190405 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    A. Widera, F. Gerbier, S. Flling, T. Gericke, O. Mandel, I. Bloch, New J. Phys. 8, 152 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    T. Ohmi, K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    H. Katsura, H. Tasaki, Phys. Rev. Lett. 110, 130405 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    M. Snoek, F. Zhou, Phys. Rev. B 69, 094410 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    E. Demler, F. Zhou, Phys. Rev. Lett. 88, 163001 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    A. Imambekov, M. Lukin, E. Demler, Phys. Rev. A 68, 063602 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    S. Tsuchiya, S. Kurihara, T. Kimura, Phys. Rev. A 70, 043628 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    T. Kimura, S. Tsuchiya, S. Kurihara, Phys. Rev. Lett. 94, 110403 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    R.V. Pai, K. Sheshadri, R. Pandit, Phys. Rev. B 77, 014503 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    F. Zhou, G.W. Semenoff, Phys. Rev. Lett. 97, 180411 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    J.-S. Bernier, K. Sengupta, Y.B. Kim, Phys. Rev. B 76, 014502 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Song, F. Zhou, Phys. Rev. A 77, 033628 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    S.S. Natu, J.H. Pixley, S. Das Sarma, Phys. Rev. A 91, 043620 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    K.H.Z. So, M. Ueda, Phys. Rev. A 96, 023628 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    L. de Forges de Parny, F. Hébert, V.G. Rousseau, G.G. Batrouni, Phys. Rev. B 88, 104509 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    G.G. Batrouni, V.G. Rousseau, R.T. Scalettar, Phys. Rev. Lett. 102, 140402 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    A. Imambekov, M. Lukin, E. Demler, Phys. Rev. Lett. 93, 120405 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    M. Rizzi, D. Rossini, G. De Chiara, S. Montangero, R. Fazio, Phys. Rev. Lett. 95, 240404 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    V. Apaja, O.F. Syljuåsen, Phys. Rev. A 74, 035601 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 68, 043612 (2003) ADSCrossRefGoogle Scholar
  32. 32.
    M.-C. Chung, S. Yip, Phys. Rev. A 80, 053615 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    K. Rodríguez, A. Argüelles, A.K. Kolezhuk, L. Santos, T. Vekua, Phys. Rev. Lett. 106, 105302 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    S.B. Haley, P. Erdös, Phys. Rev. B 5, 1106 (1972) ADSCrossRefGoogle Scholar
  35. 35.
    A.S. Sajna, T.P. Polak, R. Micnas, P. Rożek, Phys. Rev. A 92, 013602 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    C.K. Law, H. Pu, N.P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Wu, Phys. Rev. A 54, 4534 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    K. Sheshadri, H. Krishnamurthy, R. Pandit, T. Ramakrishnan, Europhys. Lett. 22, 257 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    T. Kimura, Phys. Rev. A 87, 043624 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    M. Ohliger, Diploma thesis, 2008 Google Scholar
  41. 41.
    H.H. Chen, P.M. Levy, Phys. Rev. B 7, 4267 (1973) ADSCrossRefGoogle Scholar
  42. 42.
    S.K. Yip, Phys. Rev. Lett. 90, 250402 (2003) ADSCrossRefGoogle Scholar
  43. 43.
    J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Nature 396, 345 (1999) ADSCrossRefGoogle Scholar
  44. 44.
    R. Micnas, J. Phys. C: Solid State Phys. 9, 3307 (1976) ADSCrossRefGoogle Scholar
  45. 45.
    N. Papanicolaou, Nucl. Phys. B 305, 367 (1988) ADSCrossRefGoogle Scholar
  46. 46.
    M. Marcus, H. Minc, A survey of matrix theory matrix inequalities (Courier Corporation, 1992) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of ChinaShanghaiP.R. China
  3. 3.CAS-Alibaba Quantum Computing LaboratoryShanghaiP.R. China

Personalised recommendations