Skip to main content
Log in

The exact solution of a four-body Coulomb problem

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps–Ps, Ps–Mu, Ps–H, Ps–D, Ps–T, Mu–Mu, Mu–H, Mu–D, Mu–T, H–H, H–D, H–T, D–D, D–T, T–T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)–H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.P. Hamilton, Nature 533, 187 (2016)

    Article  ADS  Google Scholar 

  2. M. Schulz, R. Moshammer, D. Fischer, H. Kolimas, D.H. Madison, S. Jones, J. Ullrich, Nature 422, 48 (2003)

    Article  ADS  Google Scholar 

  3. H. Ray, Pramana 83, 907 (2014)

    Article  ADS  Google Scholar 

  4. H. Ray, R. De, J. Phys. B Conf. Ser. 618, 012008 (2015)

    Article  Google Scholar 

  5. H. Ray, A. De, J. Phys. B Conf. Ser. 388, 122002 (2012)

    Article  Google Scholar 

  6. H. Ray, Pramana 86, 1077 (2016)

    Article  ADS  Google Scholar 

  7. H. Ray, Pramana 87, 8 (2016)

    Article  ADS  Google Scholar 

  8. H. Ray, A. De, D. Ray, in The effect of long-range forces in Ps and H collision (invited 1st issue) (New Alipore College, Kolkata, India, 2016), Vol. 1

  9. H. Ray, A.S. Ghosh, J. Phys. B 29, 5505 (1996)

    Article  ADS  Google Scholar 

  10. H. Ray, A.S. Ghosh, J. Phys. B 30, 3745 (1997)

    Article  ADS  Google Scholar 

  11. A.S. Ghosh, N.C. Sil, P. Mondal, Phys. Rep. 87, 313 (1982)

    Article  ADS  Google Scholar 

  12. P.A. Fraser, Proc. R. Soc. B 78, 329 (1961)

    Article  ADS  Google Scholar 

  13. P.A. Fraser, J. Phys. B. 1, 1006 (1968)

    Article  ADS  Google Scholar 

  14. H. Ray, in GSFC NASA Conference Proceeding on Atomic and Molecular Physics (NASA/CP-2006-214146), edited by A.K. Bhatia (2007), p. 121

  15. H. Ray, A.S. Ghosh, J. Phys. B 31, 4427 (1998)

    Article  ADS  Google Scholar 

  16. H. Ray, J. Phys. B 32, 5681 (1999)

    Article  ADS  Google Scholar 

  17. H. Ray, J. Phys. B 33, 4285 (2000)

    Article  ADS  Google Scholar 

  18. H. Ray, J. Phys. B 35, 2625 (2002)

    Article  ADS  Google Scholar 

  19. H. Ray, Phys. Rev. A 73, 064501 (2006)

    Article  ADS  Google Scholar 

  20. M.I. Barker, B.H. Bransden, J. Phys. B 1, 1109 (1968)

    Article  ADS  Google Scholar 

  21. M.I. Barker, B.H. Bransden, J. Phys. B 2, 730 (1969)

    Article  ADS  Google Scholar 

  22. W.J. Moore, in Physical chemistry, 2nd edn. (Prentice-Hall, Englewood Cliffs, N.J., 1955), Chap. 11, p. 298

  23. I.A. Ivanov, J. Mitroy, K. Varga, Phys. Rev. A 65, 022704 (2002)

    Article  ADS  Google Scholar 

  24. A. Sen, S. Chakraborty, A.S. Ghosh, Europhys. Lett. 76, 582 (2006)

    Article  ADS  Google Scholar 

  25. S.J. Brawley, S. Amritage, J. Beale, D.E. Leslie, A.I. Williams, G. Laricchia, Science 330, 789 (2010)

    Article  ADS  Google Scholar 

  26. J. Mitroy, M.W.J. Bromley, Phys. Rev. A 68, 035201 (2003)

    Article  ADS  Google Scholar 

  27. M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys. Rev. A 46, 6956 (1992)

    Article  ADS  Google Scholar 

  28. M.J. Jamieson, A. Dalgarno, J. Phys. B 31, L219 (1998)

    Article  ADS  Google Scholar 

  29. C.J. Williams, P.S. Julienne, Phys. Rev. A 47, 1524 (1995)

    Article  ADS  Google Scholar 

  30. N. Koyama, J.C. Baird, J. Phys. Soc. Jpn. 55, 801 (1986)

    Article  ADS  Google Scholar 

  31. R.J. Drachman, GSFC, NASA, private communications

  32. J. Weiner, V.S. Bagnato, S. Zillo, P.S. Julienne, Rev. Mod. Phys. 71, 1 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasi Ray.

Additional information

Contribution to the Topical Issue “Low Energy Positron and Electron Interactions”, edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, H. The exact solution of a four-body Coulomb problem. Eur. Phys. J. D 72, 58 (2018). https://doi.org/10.1140/epjd/e2018-80535-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80535-y

Navigation