Skip to main content
Log in

Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave–particle interaction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave–particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Dudley, G. Genty, S. Cohen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  2. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, D.N. Christodoulides, Phys. Rep. 542, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. P.A.E.M. Janssen, J. Phys. Oceanogr. 33, 863 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Hasselmann, J. Fluid Mech. 15, 273 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y.V. Lvov, S. Nazarenko, Phys. Rev. E 69, 066608 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. W.L. Kruer, J.M. Dawson, R.N. Sudan, Phys. Rev. Lett. 23, 838 (1969)

    Article  ADS  Google Scholar 

  7. S. Brunner, R.L. Berger, B.I. Cohen, L. Hausammann, E.J. Valeo, Phys. Plasmas 21, 102104 (2014)

    Article  ADS  Google Scholar 

  8. R.L. Berger, S. Brunner, T. Chapman, L. Divol, C.H. Still, E.J. Valeo, Phys. Plasmas 20, 032107 (2013)

    Article  ADS  Google Scholar 

  9. I.Y. Dodin, Fusion Sci. Technol. 65, 54 (2014)

    Article  Google Scholar 

  10. K. Hara, I. Barth, E. Kaminski, I.Y. Dodin, N.J. Fisch, Phys. Rev. E 95, 053212 (2017)

    Article  ADS  Google Scholar 

  11. S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov, Physica D 57, 96 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. V.E. Zakharov, F. Dias, A. Pushkarev, Phys. Rep. 398, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. V. Chandran, S. Elgar, B. Vanhoff, IEEE Trans. Signal Process. 42, 3340 (1994)

    Google Scholar 

  14. V.E. Zakharov, Sov. Phys. JETP 35, 908 (1972)

    ADS  Google Scholar 

  15. V.E. Zakharov, L.A. Ostrovsky, Physica D 238, 540 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Infeld, Phys. Rev. Lett. 47, 717 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. D.C. Samuels, R.J. Donnely, Phys. Rev. Lett. 64, 1385 (1990)

    Article  ADS  Google Scholar 

  18. P. Suret, S. Randoux, H.R. Jauslin, A. Picozzi, Phys. Rev. Lett. 104, 054101 (2010)

    Article  ADS  Google Scholar 

  19. A. Mussot, A. Kudlinski, M. Droques, P Szriftgiser, N. Akhmediev, Phys. Rev. X 4, 011054 (2014)

    Google Scholar 

  20. Y. Ichikawa, Prog. Theor. Phys. Suppl. 55, 212 (1974)

    Article  ADS  Google Scholar 

  21. T.H. Stix, Waves in plasmas (American Institute of Physics, New York, 1992), Chapter 16-8

  22. E. Kawamori, Phys. Plasmas 24, 090701 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawamori Eiichirou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiichirou, K. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave–particle interaction. Eur. Phys. J. D 72, 63 (2018). https://doi.org/10.1140/epjd/e2018-80502-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80502-8

Keywords

Navigation