Advertisement

Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

  • Alexei M. Frolov
Regular Article
  • 57 Downloads

Abstract

The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion H2 with the two infinitely heavy nuclei.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A.M. Frolov, D.M. Bishop, Phys. Rev. A 45, 6236 (1992) [see also: J. Phys. B 25, 3049, 3059 (1992)] ADSCrossRefGoogle Scholar
  2. 2.
    H.A. Bethe, E.E. Salpeter, Quantum mechanics of one-, two-electron atoms (Dover Publ. Inc., Mineola, NY, 2008) Google Scholar
  3. 3.
    H. Eyring, J. Walter, G.E. Kimball, Quantum chemistry (John Wiley & Sons, Inc., NY, 1946) Google Scholar
  4. 4.
    R. McWeeny, B.T. Sutcliffe, Methods of molecular quantum mechanics (Acad. Press, NY, 1969) Google Scholar
  5. 5.
    A.M. Frolov, Zh. Eksp. Teor. Fiz. 92, 1959 (1987) [Sov. Phys. JETP 92, 1100 (1987)] Google Scholar
  6. 6.
    A.M. Frolov, V.H. Smith Jr., J. Phys. B: At. Mol. Opt. Phys. 28, L449 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Frolov, Phys. Rev. E 65, 046705 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 35, L331 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 35, 4287 (2002) [see also: Phys. Rev. A 67, 064501 (2003)] ADSCrossRefGoogle Scholar
  10. 10.
    S.T. Epstein, The variation method in quantum chemistry (Academic Press, New York, 1974) Google Scholar
  11. 11.
    E.A. Hyileraas, Z. Phys. 54, 347 (1929) ADSCrossRefGoogle Scholar
  12. 12.
    E.A. Hyileraas, Z. Phys. 65, 209 (1930) ADSCrossRefGoogle Scholar
  13. 13.
    E.A. Hylleraas, Phys. Rev. 71, 491 (1947) ADSCrossRefGoogle Scholar
  14. 14.
    L.M. Delves, T. Kalotas, Aust. J. Phys. 21, 1 (1968) ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Frolov, V.D. Efros, Pizm v Zh. Eksp. Teor. Fiz. 39, 449 (1984) [Sov. Phys. JETP Lett. 39, 544 (1984)] Google Scholar
  16. 16.
    A.K. Bhatia, R.J. Drachman, Phys. Rev. A 30, 2138 (1984) ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Frolov, D.M. Wardlaw, Eur. Phys. J. D 63, 339 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Frolov, D.M. Wardlaw, Eur. Phys. J. D 66, 212 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    C.L. Pekeris, Phys. Rev. 115, 1216 (1959) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C.L. Pekeris, Phys. Rev. 112, 1649 (1958) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Kvantovaya Teoriya Uglovogo Momenta (Quantum theory of angular momentum) (Nauka, Moscow, 1975) Google Scholar
  22. 22.
    M.E. Rose, Elementary theory of angular momentum (Dover Publications, New York, 1995) Google Scholar
  23. 23.
    A.M. Frolov, A.Yu. Yeremin, J. Phys. B: At. Mol. Opt. Phys. 22, 1263 (1989) ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Sokolov, I.M. Ternov, Relativistic electron (Nauka (Science), Moscow 1983) Google Scholar
  25. 25.
    M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927) CrossRefGoogle Scholar
  26. 26.
    H.A. Bethe, Intermediate quantum mechanics (W.A. Benjamin Inc., New York, 1964) Google Scholar
  27. 27.
    D.H. Bailey, ACM Trans. Math. Softw. 21, 379 (1995) CrossRefGoogle Scholar
  28. 28.
    D.H. Bailey, Comput. Sci. Eng. 2, 24 (2000) CrossRefGoogle Scholar
  29. 29.
    A.M. Frolov, Phys. Rev. A 57, 2436 (1998) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A.M. Frolov, Phys. Rev. E 64, 036704 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    A.M. Frolov, Phys. Rev. E 74, 027702 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    Yu.N. Demkov, Pizma v Zh. Eksp. Teor. Fiz. 7, 101 (1968) [Sov. Phys. JETP Lett. 7, 76 (1988)] Google Scholar
  33. 33.
    A.M. Frolov, Pizma v Zh. Eksp. Teor. Fiz. 38, 607 (1983) [Sov. Phys. JETP Lett. 38, 501 (1983)] Google Scholar
  34. 34.
    N.F. Truskova, Yad. Fiz. 29, 243 (1979) [Sov. Phys. Nucl. Phys. 29, 122 (1979)] MathSciNetGoogle Scholar
  35. 35.
    W. Lenz, Z. f. Phys. 24, 197 (1924) ADSCrossRefGoogle Scholar
  36. 36.
    H. Wind, J. Chem. Phys. 42, 2371 (1965) ADSCrossRefGoogle Scholar
  37. 37.
    L.J. Schaad, W.V. Hicks, J. Chem. Phys. 53, 851 (1970) ADSCrossRefGoogle Scholar
  38. 38.
    J.-P. Grivet, J. Chem. Educ. 79, 127 (2002) CrossRefGoogle Scholar
  39. 39.
    W. Censek, W. Kutzelnigg, J. Chem. Phys. 105, 5878 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    Y. Ning, Z.-C. Yan, Phys. Rev. A 90, 032516 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    Y. Hijikata, H. Nakashima, H. Nakatsuji, JCP 130, 024102 (2009) Google Scholar
  42. 42.
    H. Li, J. Wu, B.-L. Zhou, J.-M. Zhu, Z.-C. Yan, Phys. Rev. A 75, 012504 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    B. Grémaud, D. Delande, N. Billy, J. Phys. B: At. Mol. Opt. Phys. 31 383 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    B.T. Sutcliff, Theor. Chem. Acc. 118, 563 (2007) CrossRefGoogle Scholar
  45. 45.
    J. Sucher, R.J. Drachman, Phys. Rev. A 20, 424 (1979) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    R.J. Drachman, J. Sucher, Phys. Rev. A 20, 442 (1979) ADSCrossRefGoogle Scholar
  47. 47.
    A.K. Bhatia, J. Sucher, J. Phys. B: At. Mol. Opt. Phys. 13, L409 (1980) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITAMP, Harvard-Smithonian Center for AstrophysicsCambridgeUSA
  2. 2.Department of Applied Mathematics University of Western OntarioLondonCanada

Personalised recommendations