Skip to main content
Log in

Simple method for determining fullerene negative ion formation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer–Townsend minimum of the total cross section representing stable C60 fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer–Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kasdan, W.C. Lineberger, Phys. Rev. A 10, 1658 (1974)

    Article  ADS  Google Scholar 

  2. D.R. Bates, Adv. At. Mol. Opt. Phys. 27, 1 (1991)

    ADS  Google Scholar 

  3. C. Blondel, Phys. Scr. T 58, 31 (1995)

    Article  ADS  Google Scholar 

  4. T. Andersen, Phys. Rep. 394, 157 (2004)

    Article  ADS  Google Scholar 

  5. D.J. Pegg, Rep. Prog. Phys. 67, 857 (2004)

    Article  ADS  Google Scholar 

  6. S.T. Buckman, C.W. Clark, Rev. Mod. Phys. 66, 539 (1994)

    Article  ADS  Google Scholar 

  7. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, in Science of fullerenes and carbon nanotubes (Academic Press, Boston, MA, 1996)

  8. Z. Felfli, A.Z. Msezane, D. Sokolovski, Nucl. Instrum. Methods Phys. Res. B 269, 1046 (2011)

    Article  ADS  Google Scholar 

  9. A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 41, 105201 (2008)

    Article  ADS  Google Scholar 

  10. S. Aubin, S. Myrskog, M.H.T. Extavour, L.J. LeBlanc, D. McKay, A. Stummer, J.H. Thywissen, Nat. Phys. 2, 384 (2006)

    Article  Google Scholar 

  11. A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 43, 201001 (2010)

    Article  ADS  Google Scholar 

  12. O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B. 30, 4633 (1997)

    Article  ADS  Google Scholar 

  13. M. Lezius, P. Scheier, T.D. Märk, Chem. Phys. Lett. 203, 232 (1993)

    Article  ADS  Google Scholar 

  14. T. Jaffke, E. Illenberger, M. Lezius, S. Matejcik, D. Smith, T.D. Märk, Chem. Phys. Lett. 226, 213 (1994)

    Article  ADS  Google Scholar 

  15. J. Huang, H.S. Carman, R.N. Compton, J. Phys. Chem. 99, 1719 (1995)

    Article  Google Scholar 

  16. W. Jaskólski, Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  17. L.L. Lohr, S.M. Blinder, Chem. Phys. Lett. 198, 100 (1992)

    Article  ADS  Google Scholar 

  18. M.J. Pushka, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993)

    Article  ADS  Google Scholar 

  19. M.Ya. Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998)

    Article  ADS  Google Scholar 

  20. J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999)

    Article  ADS  Google Scholar 

  21. V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Radiat. Phys. Chem. 70, 417 (2004)

    Article  ADS  Google Scholar 

  22. E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B: At. Mol. Opt. Phys. 44, 015003 (2011)

    Article  ADS  Google Scholar 

  23. C.Y. Lin, Y.K. Ho, J. Phys. B: At. Mol. Opt. Phys. 45, 145001 (2012)

    Article  ADS  Google Scholar 

  24. A.S. Baltenkov, Phys. Lett. A 254, 203 (1999)

    Article  ADS  Google Scholar 

  25. A.S. Baltenkov, A.Z. Msezane, Proc. Dyn. Syst. Appl. 7, 239 (2016)

    Google Scholar 

  26. M.Ya. Amusia, A.S. Baltenkov, U. Becker, Phys. Rev. A 62, 012701 (2000)

    Article  ADS  Google Scholar 

  27. M.Ya. Amusia, A.S. Baltenkov, L.V. Chernysheva, Z. Felfli, A.Z. Msezane, J. Phys. B 38, L169 (2005)

    Article  ADS  Google Scholar 

  28. A.S. Baltenkov, S.T. Manson, A.Z. Msezane, Phys. Rev. A 76, 042707 (2007)

    Article  ADS  Google Scholar 

  29. M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Phys. Rev. A 80, 032503 (2009)

    Article  ADS  Google Scholar 

  30. A.V. Korol, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 43, 201004 (2010)

    Article  ADS  Google Scholar 

  31. A.S. Baltenkov, U. Becker, S.T. Manson, A.Z. Msezane, J. Phys. B 43, 115102 (2010)

    Article  ADS  Google Scholar 

  32. M.Ya. Amusia, V.K. Dolmatov, L.V. Chernysheva, Phys. Rev. A 84, 063201 (2011)

    Article  ADS  Google Scholar 

  33. M.E. Madjet, H.S. Chakraborty, S.T. Manson, Phys. Rev. Lett. 99, 243003 (2007)

    Article  ADS  Google Scholar 

  34. M.E. Madjet, H.S. Chakraborty, J.M. Rost, S.T. Manson, J. Phys. B 41, 105101 (2008)

    Article  ADS  Google Scholar 

  35. O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997)

    Article  ADS  Google Scholar 

  36. Z. Chen, A.Z. Msezane, Phys. Rev. A 88, 043423 (2013)

    Article  ADS  Google Scholar 

  37. Z. Chen, A.Z. Msezane, Phys. Rev. A 89, 025401 (2014)

    Article  ADS  Google Scholar 

  38. Z. Chen, A.Z. Msezane, Eur. Phys. J. D 69, 88 (2015)

    Article  ADS  Google Scholar 

  39. A.L.D. Kilcoyne, Phys. Rev. Lett. 105, 213001 (2010)

    Article  ADS  Google Scholar 

  40. B. Li, G. O’Sullivan, C. Dong, J. Phys. B 46, 155203 (2013)

    Article  ADS  Google Scholar 

  41. V.K. Dolmatov, D.A. Keating, J. Phys.: Conf. Ser. 388, 022010 (2012)

    Google Scholar 

  42. T.W. Gorczyca, M.F. Hasoglu, S.T. Manson, Phys. Rev. A 86, 033204 (2012)

    Article  ADS  Google Scholar 

  43. R.A. Phaneuf, Phys. Rev. A 88, 053402 (2013)

    Article  ADS  Google Scholar 

  44. M.Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 89, 057401 (2014)

    Article  ADS  Google Scholar 

  45. C. Winstead, V. McKoy, Phys. Rev. A 73, 012711 (2006)

    Article  ADS  Google Scholar 

  46. R.R. Lucchese, F.A. Gianturco, N. Sanna, Chem. Phys. Lett. 305, 413 (1999)

    Article  ADS  Google Scholar 

  47. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Phys. B 32, 2181 (1999)

    Article  ADS  Google Scholar 

  48. F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 111, 6769 (1999)

    Article  ADS  Google Scholar 

  49. F.A. Gianturco, G.Y. Kashenock, R.R. Lucchese, N. Sanna, J. Chem. Phys. 116, 2811 (2002)

    Article  ADS  Google Scholar 

  50. N. Ipatov, V.K. Ivanov, J.M. Pacheco, W. Ekardt, J. Phys. B 31, L5119 (1998)

    Article  Google Scholar 

  51. V.K. Dolmatov, M.B. Cooper, M.E. Hunter, J. Phys. B: At. Mol. Opt. Phys. 47, 15002 (2014)

    Article  Google Scholar 

  52. V.K. Dolmatov, C. Bayens, M.B. Cooper, M.E. Hunter, Phys. Rev. A 91, 062703 (2015)

    Article  ADS  Google Scholar 

  53. M.Ya. Amusia, L.V. Chernysheva, JETP 101, 503 (2015)

    Article  Google Scholar 

  54. H. Tanaka, L. Boesten, K. Onda, O. Ohashi, J. Phys. Soc. Jpn 63, 485 (1994)

    Article  ADS  Google Scholar 

  55. O. Elhamidi, J. Pommier, R.J. Abouaf, Int. J. Mass. Spectr. 205, 17 (2001)

    Article  Google Scholar 

  56. A. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B: At. Mol. Opt. Phys. 48, 185103 (2015)

    Article  ADS  Google Scholar 

  57. G. Schrange-Kashenock, J. Phys. B: At. Mol. Opt. Phys. 49, 185002 (2016)

    Article  ADS  Google Scholar 

  58. L.G. Gerchikov, A.V. Solov’yov, J.-P. Connerade, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 30, 4133 (1997)

    Article  ADS  Google Scholar 

  59. J.-P. Connerade, L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 32, 877 (1999)

    Article  ADS  Google Scholar 

  60. L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 30, 5939 (1997)

    Article  ADS  Google Scholar 

  61. A.N. Ipatov, J.-P. Connerade, L.G. Gerchikov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 31, L27 (1998)

    Article  Google Scholar 

  62. J.-P. Connerade, L.G. Gerchikov, A.N. Ipatov, S. Sentürk, J. Phys. B: At. Mol. Opt. Phys. 33, 5109 (2000)

    Article  ADS  Google Scholar 

  63. V.K. Ivanov, J. Phys. B: At. Mol. Opt. Phys. 32, R67 (1999)

    Article  ADS  Google Scholar 

  64. A.N. Ipatov, V.K. Ivanov, B.D. Agap’ev, W. Ekardt, J. Phys. B 31, 925 (1998)

    Article  ADS  Google Scholar 

  65. P. Descourt, M. Farine, C. Guet, J. Phys. B: At. Mol. Opt. Phys. 33, 4565 (2000)

    Article  ADS  Google Scholar 

  66. S.C. Frautschi, in Regge poles and S-matrix theory (Benjamin, New York, 1963), chapter X

  67. V. de Alfaro, T. Regge, Potential scattering (Amsterdam, North-Holland, 1995)

  68. Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 79, 012714 (2009)

    Article  ADS  Google Scholar 

  69. K.W. Thylwe, Eur. Phys. J. D 66, 7 (2012)

    Article  ADS  Google Scholar 

  70. H.P. Mulholland, Proc. Camb. Philos. Soc. (Lond.) 24, 280 (1928)

    Article  ADS  Google Scholar 

  71. J.H. Macek, P.S. Krstic, S.Y. Ovchinnikov, Phys. Rev. Lett. 93, 183202 (2004)

    Article  ADS  Google Scholar 

  72. D. Sokolovski, Z. Felfli, S.Y. Ovchinnikov, J.H. Macek, A.Z. Msezane, Phys. Rev. A 76, 012705 (2007)

    Article  ADS  Google Scholar 

  73. E.H. Lieb, B. Simon, Adv. Math. 23, 22 (1977)

    Article  Google Scholar 

  74. E.H. Lieb, Rev. Mod. Phys. 48, 553 (1976)

    Article  ADS  Google Scholar 

  75. C.C. Tisdell, M. Holzer, Differ. Equ. Appl. 7, 27 (2015)

    MathSciNet  Google Scholar 

  76. L.H. Thomas, Philos. Soc. 23, 542 (1928)

    Google Scholar 

  77. E. Fermi, Z. Phys. 48, 73 (1928)

    Article  ADS  Google Scholar 

  78. L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, 3rd edn. (Butterworth-Heinemann, Oxford, 1999), Vol. 3, p. 277

  79. S. Esposito, Am. J. Phys. 70, 851 (2002)

    Article  ADS  Google Scholar 

  80. L.N. Epele, H. Fanchiotti, C.A. García Canal, J.A. Ponciano, Phys. Rev. A 60, 280 (1999)

    Article  ADS  Google Scholar 

  81. Z. Felfli, S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, in Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, J. Govaerts, M.N. Hounkonnou, A.Z. Msezane, eds. (World Scientific, Singapore, 2004), pp. 218–232

  82. T. Tietz, Z. Naturforsch 26a, 1054 (1971)

    ADS  Google Scholar 

  83. S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 37, 6943 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  84. N.B. Avdonina, S. Belov, Z. Felfli, A.Z. Msezane, S.N. Naboko, Phys. Rev. A 66, 022713 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  85. S. Belov, K.-E. Thylwe, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 43, 365301 (2010)

    Article  MathSciNet  Google Scholar 

  86. K.-E. Thylwe, P. McCabe, Eur. Phys. J. D 68, 323 (2014)

    Article  ADS  Google Scholar 

  87. P.G. Burke, C. Tate, Comput. Phys. Commun. 1, 97 (1969)

    Article  ADS  Google Scholar 

  88. J.N.L. Connor, J. Chem. Soc. Faraday Trans. 86, 1627 (1990)

    Article  Google Scholar 

  89. W.R. Johnson, C. Guet, Phys. Rev. A 49, 1041 (1994)

    Article  ADS  Google Scholar 

  90. L.-S. Wang, J.J. Conceicao, C.M. Jin, R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991)

    Article  ADS  Google Scholar 

  91. D.-L. Huang, P.D. Dau, H.-T. Liu, L.-S. Wang, J. Chem. Phys. 140, 224315 (2014)

    Article  ADS  Google Scholar 

  92. C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Chem. Phys. Lett. 233, 52 (1995)

    Article  ADS  Google Scholar 

  93. X.-B. Wang, C.-F. Ding, L.-S. Wang, J. Chem. Phys. 110, 8217 (1999)

    Article  ADS  Google Scholar 

  94. X.B. Wang, H.K. Woo, L.S. Wang, J. Chem. Phys. 123, 051106 (2005)

    Article  ADS  Google Scholar 

  95. O.V. Boltalina, L.N. Sidorov, E.V. Sukhanova, E.V. Skokan, Rapid Commun. Mass Spectrom. 7, 1009 (1993)

    Article  ADS  Google Scholar 

  96. X.-B. Wang, H.-K. Woo, J. Yang, M.M. Kappes, L.S. Wang, J. Phys. Chem. C 111, 17684 (2007)

    Article  Google Scholar 

  97. O.V. Boltalina, E.V. Dashkova, L.N. Sidorov, Chem. Phys. Lett. 256, 253 (1996)

    Article  ADS  Google Scholar 

  98. O.V. Boltalina, I.N. Ioffe, I.D. Sorokin, L.N. Sidorov, J. Phys. Chem. A 101, 9561 (1997)

    Article  Google Scholar 

  99. L. Xu, W. Cai, X. Shao, Comput. Mater. Sci. 41, 522 (2008)

    Article  Google Scholar 

  100. X.B. Wang, H.K. Woo, X. Huang, M.M. Kappes, L.S. Wang, Phys. Rev. Lett. 96, 143002 (2006)

    Article  ADS  Google Scholar 

  101. J.M. Cabrera-Trujillo, J.A. Alonso, M.P. Iniguez, M.J. López, A. Rubio, Phys. Rev. B 53, 16059 (1996)

    Article  ADS  Google Scholar 

  102. R.J. Tarento, P. Joyes, Z. Phys. D 37, 165 (1996)

    Article  ADS  Google Scholar 

  103. J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, J. Chem. Soc. Faraday Discuss. 138, 225 (2008)

    Article  ADS  Google Scholar 

  104. J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kiely, G.J. Hutchings, J. Mater. Chem. 15, 4595 (2005)

    Article  Google Scholar 

  105. S.J. Freakley, Science 351, 959 (2016)

    Article  ADS  Google Scholar 

  106. Z. Felfli, A.Z. Msezane, J. Phys. Conf. Ser. 875, 062011 (2017)

    Article  Google Scholar 

  107. E.T. Hoke, Adv. Energy Mater. 2, 1351 (2012)

    Article  Google Scholar 

  108. V.G. Zakrzewski, O. Dolgounitcheva, J.V. Ortiz, J. Phys. Chem. A 118, 7424 (2014)

    Article  Google Scholar 

  109. S. Nagase, K. Kabayashi, Chem. Phys. Lett. 228, 106 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Z. Msezane.

Additional information

Contribution to the Topical Issue “Low Energy Positron and Electron Interactions”, edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felfli, Z., Msezane, A.Z. Simple method for determining fullerene negative ion formation. Eur. Phys. J. D 72, 78 (2018). https://doi.org/10.1140/epjd/e2018-80420-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80420-9

Navigation