Dust-charge fluctuation effects on surface dust-acoustic waves in astrophysical half-space dusty plasmas

Regular Article
  • 13 Downloads

Abstract

We investigate the dust-charge fluctuation effects on the propagation and the decay of the dust-acoustic surface plasma wave at the interface of plasma-vacuum in astrophysical half-space dusty plasmas. The dispersion relation for the surface mode is derived by using the appropriate plasma dielectric function. We found that wave frequency decreases as the dust-charging frequency increases as well as the dynamical wave number does. However, the damping rate of the surface wave increases with an increase of the dust-charging frequency and the dynamical wave number. Hence, the amplitude of the surface wave is found to be strongly suppressed with an increase of the dust-charging frequency. The increase of charging relaxation rate is found to suppress both of the real frequency of the wave and the damping rate of the surface wave in astrophysical half-space dusty plasmas.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    R.J. Gould, E.E. Salpeter, ApJ 138, 393 (1963) ADSCrossRefGoogle Scholar
  2. 2.
    D.G. Wentzel, ApJ 223, 756 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    B.E. Gordon, J.V. Hollweg, ApJ 266, 373 (1983) ADSCrossRefGoogle Scholar
  4. 4.
    D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    P. Bliokh, V. Sinitsin, V. Yaroshenko, Dusty and self-gravitational plasma in space (Kluwer, Dordrecht, 1995) Google Scholar
  6. 6.
    J. Mahmoodi, P.K. Shukla, N.L. Tsintsadze, D.D. Tskhakaya, Phys. Rev. Lett. 84, 2626 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Shukla, A.A. Mamum, Introduction to dusty plasma physics (Institute of Physics Publishing, Bristol, 2002) Google Scholar
  8. 8.
    A.G.G.M. Tielens, The physics and chemistry of the interstellar medium (Cambridge University Press, Cambridge, 2005) Google Scholar
  9. 9.
    B.T. Draine, Physics of the interstellar and intergalactic medium (Princeton University Press, Princeton, 2011) Google Scholar
  10. 10.
    D. Maoz, Astrophysics in a nutshell (Princeton University Press, Princeton, 2016) Google Scholar
  11. 11.
    L. Spitzer Jr., Physics of fully ionized gases (John Wiley, New York, 1962) Google Scholar
  12. 12.
    A. Achterberg, C.A. Norman, Astron. Astrophys. 89, 353 (1980) ADSGoogle Scholar
  13. 13.
    A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of plasma electrodynamics (Springer, Berlin, 1984) Google Scholar
  14. 14.
    A. Hasegawa, K. Mima, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Assis, J. Nusnardo-Neto, ApJ 323, 399 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    A. Hasegawa, T. Sato, in Space plasma physics, vol. 1. Stationary processes (Springer, Berlin, 1989) Google Scholar
  17. 17.
    F.C. Jones, D.C. Ellison, Space Sci. Rev. 58, 259 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    F.H. Shu, The physics of astrophysics: vol. II. Gas dynamics (University Science Books, Mill Valley, 1992) Google Scholar
  19. 19.
    L. Stenflo, O.M. Gradov, Phys. Rev. E 68, 8044 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    S. Ghosh, R. Bharuthram, Astrophys. Space Sci. 331, 163 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Yu.M. Aliev, H. Schlüter, A. Shivarova, Guided-wave-produced plasmas (Springer, Berlin, 2000) Google Scholar
  22. 22.
    L. Stenflo, P.K. Shukla, M.Y. Yu, Phys. Plasmas 7, 2731 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    M.Y. Yu, Z. Chen, L. Stenflo, Phys. Plasmas 8, 5081 (2001) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Stenflo, M.Y. Yu, Phys. Plasmas 10, 912 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    H.J. Lee, Phys. Plasmas 12, 094701 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    S. Ali, M.H. Nasim, G. Murtaza, Phys. Plasmas 10, 4207 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    N. Rubab, G. Murtaza, Phys. Scr. 73, 178 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    F. Verheest, P. Meuris, Phys. Lett. A 198, 228 (1995) ADSCrossRefGoogle Scholar
  29. 29.
    K. Avinash, P.K. Shukla, Phys. Scr. T63, 269 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    M. Tribeche, T.H. Zerguini, Phys. Plasmas 8, 394 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    R.P. Prajapati, S. Bhakta, Phys. Lett. A 379, 2723 (2015) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.C. de Juli, R.S. Schneider, L.F. Ziebell, V. Jatenco-Pereira, Phys. Plasmas 12, 05219 (2005) CrossRefGoogle Scholar
  33. 33.
    S.V. Vladimirov, Phys. Plasmas 1, 2762 (1994) ADSCrossRefGoogle Scholar
  34. 34.
    M. Salimullah, M. Jamil, H.A. Shah, G. Murtaza, Phys. Plasmas 16, 014502 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    M. Jamil, M. Shahid, W. Ali, M. Salimullah, H.A. Shah, G. Murtaza, Phys. Plasmas 18, 063705 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    T.S. Ramazanov, Zh.A. Moldabekov, K.N. Dzhumagulova, M.M. Muratov, Phys. Plasmas 18, 103705 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    M. Jamil, Z. Mir, M. Asif, M. Salimullah, Phys. Plasmas 21, 092111 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    A.A. Khan, M. Jamil, A. Hussain, Phys. Plasmas 22, 092103 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversitySeoulSouth Korea
  2. 2.Research Institute for Natural Sciences, Hanyang UniversitySeoulSouth Korea
  3. 3.Department of Applied Physics and Department of BionanotechnologyHanyang UniversityAnsanSouth Korea
  4. 4.Department of Electrical and Computer EngineeringMC 0407, University of California, San DiegoLa JollaUSA

Personalised recommendations