Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets

  • Martin Kuhn
  • Stefan Raggl
  • Paul Martini
  • Norbert Gitzl
  • Masoomeh Mahmoodi Darian
  • Marcelo Goulart
  • Johannes Postler
  • Linda Feketeová
  • Paul Scheier
Regular Article
  • 9 Downloads
Part of the following topical collections:
  1. Topical Issue: Low Energy Positron and Electron Interactions

Abstract

Electron-induced chemistry in imidazole (IMI) clusters embedded in helium nanodroplets (with an average size of 2 × 105 He atoms) has been investigated with high-resolution time-of-flight mass spectrometry. The formation of both, negative and positive, ions was monitored as a function of the cluster size n. In both ion spectra a clear series of peaks with IMI cluster sizes up to at least 25 are observed. While the anions are formed by collisions of IMI n with He*–, the cations are formed through ionization of IMI n by He+ as the measured onset for the cation formation is observed at 24.6 eV (ionization energy of He). The most abundant series of anions are dehydrogenated anions IMIn–1(IMI–H), while other anion series are IMI clusters involving CN and C2H4 moieties. The formation of cations is dominated by the protonated cluster ions IMI n H+, while the intensity of parent cluster cations IMIn+ is also observed preferentially for the small cluster size n. The observation of series of cluster cations [IMI n CH3]+ suggests either CH3+ cation to be solvated by n neutral IMI molecules, or the electron-induced chemistry has led to the formation of protonated methyl-imidazole solvated by (n – 1) neutral IMI molecules.

Graphical abstract

References

  1. 1.
    H. Rosemeyer, Chem. Biodivers. 1, 361 (2004) CrossRefGoogle Scholar
  2. 2.
    K.J. Klebe, J.J. van Houte, J. van Thuijl, Org. Mass Spectrom. 6, 1363 (1972) CrossRefGoogle Scholar
  3. 3.
    A. Ribar, K. Fink, Z. Li, S. Ptasiñska, I. Carmichael, L. Feketeová, S. Denifl, Phys. Chem. Chem. Phys. 19, 6406 (2017) CrossRefGoogle Scholar
  4. 4.
    T. Schlathölter, F. Alvarado, S. Bari, A. Lecointre, R. Hoekstra, V. Bernigaud, B. Manil, J. Rangama, B. Huber, ChemPhysChem 7, 2339 (2006) CrossRefGoogle Scholar
  5. 5.
    L. Feketeová, R.A.J. O’Hair, Rapid Commun. Mass Spectrom. 23, 3259 (2009) CrossRefGoogle Scholar
  6. 6.
    S. Lee, S.J. Valentine, J.P. Reilly, D.E. Clemmer, J. Am. Chem. Soc. 133, 15834 (2011) CrossRefGoogle Scholar
  7. 7.
    A. Singh, S. Kaur, J. Kaur, P. Singh, Rapid Commun. Mass Spectrom. 28, 2019 (2014) CrossRefGoogle Scholar
  8. 8.
    V. Poterya, O. Tkáč, J. Fedor, M. Fárník, P. Slavíček, U. Buck, Int. J. Mass Spectrom. 290, 85 (2010) CrossRefGoogle Scholar
  9. 9.
    P. Slavíček, M. Fárník, Phys. Chem. Chem. Phys. 13, 12123 (2011) CrossRefGoogle Scholar
  10. 10.
    J.C. Mullaney, D.P. Zaleski, D.P. Tew, N.R. Walker, A.C. Legon, ChemPhysChem 17, 1154 (2016) CrossRefGoogle Scholar
  11. 11.
    S. Lee, S.J. Lee, A. Ahn, Y. Kim, A. Min, M.Y. Choi, R.E. Miller, Bull. Korean Chem. Soc. 32, 885 (2011) CrossRefGoogle Scholar
  12. 12.
    F. Zappa, S. Denifl, I. Mähr, A. Bacher, O. Echt, T.D. Märk, P. Scheier, J. Am. Chem. Soc. 130, 5573 (2008) CrossRefGoogle Scholar
  13. 13.
    S. Denifl, F. Zappa, I. Mähr, F.F. da Silva, A. Aleem, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, O. Echt, T.D. Märk, P. Scheier, Angew. Chem. Int. Ed. 48, 8940 (2009) CrossRefGoogle Scholar
  14. 14.
    S. Ptasinska, I. Tolbatov, P. Bartl, J. Yurkovich, B. Coffey, D.M. Chipman, C. Leidlmair, H. Schöbel, P. Scheier, N.J. Mason, RSC Adv. 2, 10492 (2012) CrossRefGoogle Scholar
  15. 15.
    M. Goulart, P. Bartl, A. Mauracher, F. Zappa, A.M. Ellis, P. Scheier, Phys. Chem. Chem. Phys. 15, 3577 (2013) CrossRefGoogle Scholar
  16. 16.
    N. Weinberger, S. Rasler, M. Renzler, M. Harnisch, A. Kaiser, S. Denifl, D.K. Böhme, P. Scheier, Eur. Phys. J. D 70, 91 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    S. Denifl, F. Zappa, A. Mauracher, F. Ferreira da Silva, A. Bacher, O. Echt, T.D. Märk, D.K. Bohme, P. Scheier, ChemPhysChem 9, 1387 (2008) CrossRefGoogle Scholar
  18. 18.
    F. Ferreira da Silva, S. Jaksch, G. Martins, H.M. Dang, M. Dampc, S. Denifl, T.D. Märk, P. Limão-Vieira, J. Liu, A.M. Ellis, P. Scheier, Phys. Chem. Chem. Phys. 11, 11631 (2009) CrossRefGoogle Scholar
  19. 19.
    F. Ferreira da Silva, S. Denifl, T.D. Märk, N.L. Doltsinis, A.M. Ellis, P. Scheier, J. Phys. Chem. A 114, 1633 (2010) CrossRefGoogle Scholar
  20. 20.
    F. Ferreira da Silva, P. Bartl, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, ChemPhysChem 11, 90 (2010) CrossRefGoogle Scholar
  21. 21.
    F. Ferreira da Silva, S. Ptasiñska, S. Denifl, D. Gschliesser, J. Postler, C. Matias, T.D. Märk, P. Limão-Vieira, P. Scheier, J. Chem. Phys. 135, 174504 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Krasnokutski, M. Goulart, E.B. Gordon, A. Ritsch, C. Jäger, M. Rastogi, W. Salvenmoser, Th. Henning, P. Scheier, Astrophys. J. 847, 89 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    M. Goulart, F. Zappa, A.M. Ellis, P. Bartl, S. Ralser, P. Scheier, Phys. Chem. Chem. Phys. 19, 24197 (2017) CrossRefGoogle Scholar
  24. 24.
    M. Renzler, M. Kuhn, A. Mauracher, A. Lindinger, P. Scheier, A.M. Ellis, Phys. Rev. Lett. 117, 273001 (2016) CrossRefGoogle Scholar
  25. 25.
    S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    H. Schöbel, P. Bartl, C. Leidlmair, M. Daxner, S. Zöttl, S. Denifl, T.D. Märk, P. Scheier, D. Spångberg, A. Mauracher, D.K. Böhme, Phys. Rev. Lett. 105, 243402 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    E.J. Al Maalouf, J. Reitshammer, A. Ribar, P. Scheier, S. Denifl, Eur. Phys. J. D 70, 148 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Ellis, S. Yang, Phys. Rev. A 76, 032714 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    W.K. Lewis, B.E. Applegate, J. Sztáray, B. Sztáray, T. Baer, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 126, 11283 (2004) CrossRefGoogle Scholar
  30. 30.
    M. Hartmann, R.E. Miller, J.P. Toennies, A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    A. Mauracher, M. Daxner, J. Postler, S.E. Huber, S. Denifl, P. Scheier, J.P. Toennies, J. Phys. Chem. Lett. 5, 2444 (2014) CrossRefGoogle Scholar
  33. 33.
    E. Jabbour Al Maalouf, M. Neustetter, E. Illenberger, P. Scheier, S. Denifl, J. Phys. Chem. Lett. 8, 2220 (2017) CrossRefGoogle Scholar
  34. 34.
    D. Huber, M. Beikircher, S. Denifl, F. Zappa, S. Matejcik, A. Bacher, V. Grill, T.D. Märk, P. Scheier, J. Chem. Phys. 125, 084304 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    N. Weinberger, S. Ralser, M. Renzler, M. Harnisch, A. Kaiser, S. Denifl, D.K. Böhme, P. Scheier, Eur. Phys. J. D 70, 91 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    S. Ralser, J. Postler, M. Harnisch, A.M. Ellis, P. Scheier, Int. J. Mass Spectrom. 379, 194 (2015) CrossRefGoogle Scholar
  37. 37.
    A.J. Gianola, T. Ichino, R.L. Hoenigman, S. Kato, V.M. Bierbaum, W.C. Lineberger, J. Phys. Chem. A 109, 11504 (2005) CrossRefGoogle Scholar
  38. 38.
    S. Denifl, F. Zappa, I. Mähr, J. Lecointre, M. Probst, T.D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    F. Ferreira da Silva, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, J. Chem. Phys. 132, 214306 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    NIST chemistry webbook, NIST standard reference database number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD, 2009), http://webbook.nist.gov (retrieved 2017/20/09)

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckInnsbruckAustria
  2. 2.Department of PhysicsKaraj Branch, Islamic Azad UniversityKarajIran
  3. 3.Université de Lyon, Université Claude Bernard Lyon1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de LyonVilleurbanneFrance

Personalised recommendations