Skip to main content
Log in

Phase modulation of atom waves: theory and experiment using the atom optics analogue of the Kerr effect

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have produced a phase modulation of a matter wave by applying a time-dependent perturbation. In the present study, the perturbation is the Stark effect produced by an electric field and, as this effect is quadratic in the applied field, this is the atom optics equivalent of the Kerr effect. In the present paper, we first develop an exact theory of phase modulation and we find results in agreement with a semiclassical calculation assuming a localized wavepacket. We then describe briefly our experimental setup which uses an atom interferometer to detect the phase modulations produced on its two arms which are spatially separated. The interferometer signal exhibits periodic oscillations, at the frequency of the modulation and its harmonics, when the same modulation frequency is applied on the two arms, and at the difference frequency and its harmonics when two different frequencies are used. All the experimental results are in very good agreement with theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch.J. Bordé, in Atom interferometry, edited by P.R. Berman (Academic Press, San Diego, CA, 1997), p. 257

  2. H. Rauch, S. Werner, in Neutron interferometry, Oxford series on neutron scattering in condensed matter (Clarendon Press, Oxford, 2000), Vol. 12

  3. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1052 (2009)

    Article  ADS  Google Scholar 

  4. Atom interferometry, in Proceedings of the International School of Physics “Enrico Fermi”, edited by G.M. Tino, M.A. Kasevich (Società Italian di Fisica, Bologne, Italy, 2014)

  5. F. Hasselbach, Rep. Prog. Phys. 73, 016101 (2010)

    Article  ADS  Google Scholar 

  6. M. Moshinsky, Phys. Rev. 88, 625 (1952)

    Article  ADS  Google Scholar 

  7. J. Felber, G. Müller, R. Gähler, R. Golub, Physica B 162, 191 (1990)

    Article  ADS  Google Scholar 

  8. Č. Brukner, A. Zeilinger, Phys. Rev. A 56, 3804 (1997)

    Article  ADS  Google Scholar 

  9. A. del Campo, G. Garca-Calderón, J. Muga, Phys. Rep. 476, 1 (2009)

    Article  ADS  Google Scholar 

  10. E. Torrontegui, J. Muñoz, Y. Ban, J.G. Muga, Phys. Rev. A 83, 043608 (2011)

    Article  ADS  Google Scholar 

  11. W.A. Hamilton, A.G. Klein, G.I. Opat, P.A. Timmins, Phys. Rev. Lett. 58, 2770 (1987)

    Article  ADS  Google Scholar 

  12. A. Steane, P. Szriftgiser, P. Desbiolles, J. Dalibard, Phys. Rev. Lett. 74, 4972 (1995)

    Article  ADS  Google Scholar 

  13. P. Szriftgiser, D. Guéry-Odelin, M. Arndt, J. Dalibard, Phys. Rev. Lett. 77, 4 (1996)

    Article  ADS  Google Scholar 

  14. Y. Colombe, B. Mercier, H. Pérrin, V. Lorent, Phys. Rev. A 72, 061601(R) (2005)

    Article  ADS  Google Scholar 

  15. J. Felber, R. Gälher, C. Rausch, R. Golub, Phys. Rev. A 53, 319 (1996)

    Article  ADS  Google Scholar 

  16. A.I. Frank et al., Phys. Lett. A 311, 6 (2003)

    Article  ADS  Google Scholar 

  17. A.I. Frank et al., Nucl. Instrum. Methods Phys. Res. A 611, 314 (2009)

    Article  ADS  Google Scholar 

  18. I. Bloch, T.W. Hänsch, T. Esslinger, Nature 403, 166 (2000)

    Article  ADS  Google Scholar 

  19. T.D. Roberts, A.D. Cronin, M.V. Tiberg, D.E. Pritchard, Phys. Rev. Lett. 92, 060405 (2004)

    Article  ADS  Google Scholar 

  20. W.F. Holmgren, I. Hromada, C.E. Klauss, A.D. Cronin, New. J. Phys. 13, 115007 (2011)

    Article  ADS  Google Scholar 

  21. E.T. Smith et al., Phys. Rev. Lett. 81, 1996 (1998)

    Article  ADS  Google Scholar 

  22. R.A. Rubenstein et al., Phys. Rev. Lett. 82, 2018 (1999)

    Article  ADS  Google Scholar 

  23. S. Bernet et al., Phys. Rev. Lett. 77, 5160 (1996)

    Article  ADS  Google Scholar 

  24. S. Bernet et al., Phys. Rev. A 62, 023606 (2000)

    Article  ADS  Google Scholar 

  25. B. Decamps, J. Gillot, A. Gauguet, J. Vigué, M. Büchner, Phys. Rev. Lett. 116, 053004 (2016)

    Article  ADS  Google Scholar 

  26. P. Storey, C. Cohen-Tannoudji, J. Phys. II 4, 1999 (1994)

    Google Scholar 

  27. W. Li, L.E. Reichl, Phys. Rev. B 60, 15732 (1999)

    Article  ADS  Google Scholar 

  28. P.A. Martin, J. Phys. A: Math. Theor. 41, 015207 (2008)

    Article  Google Scholar 

  29. Digital Library of Mathematical Functions, equation 10.23.6 and 10.23.7, http://dlmf.nist.gov/10.23

  30. H.T. Koelink, R.F. Swarttouw, J. Approx. Theory 87, 260 (1995)

    Article  Google Scholar 

  31. F. Pockels, Ueber den Einfluss des elektrostatischen Feldes auf das optische Verhalten piëzoelektrischer Krystalle, (Abhandlungen der mathematisch-physikalischen Klasse der Königlichen Gesellschaft der Wissenschaften zu Göttingen), Band 39 (1893)

  32. J. Kerr, Philos. Mag. Ser. 4 50, 337 (1875)

    Google Scholar 

  33. M.-A. Bouchiat, C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997)

    Article  ADS  Google Scholar 

  34. The ACME Collaboration, Science 343, 269 (2014)

    Article  Google Scholar 

  35. T. Fleig, M.N. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

    Article  ADS  Google Scholar 

  36. Z. Bialynicka-Birula, I. Bialynicka-Birula, Phys. Rev. D 2, 2341 (1970)

    Article  ADS  Google Scholar 

  37. H. Euler, B. Kockel, Naturwissenschaften 23, 246 (1935)

    Article  ADS  Google Scholar 

  38. A. Miffre, M. Jacquey, M. Büchner, G. Trénec, J. Vigué, Eur. Phys. J. D 33, 99 (2005)

    Article  ADS  Google Scholar 

  39. A. Miffre, PhD thesis, Université P. Sabatier, 2011, http://tel.archives-ouvertes.fr/

  40. S. Lepoutre, PhD thesis, Université P. Sabatier, 2011, http://tel.archives-ouvertes.fr/

  41. J.P. Toennies, K. Winkelmann, J. Chem. Phys. 66, 3965 (1977)

    Article  ADS  Google Scholar 

  42. D.R. Miller, in Atomic and molecular beam methods, edited by G. Scoles (Oxford University Press, Oxford, 1988)

  43. M. Jacquey, A. Miffre, M. Büchner, G. Trénec, J. Vigué, Europhys. Lett. 77, 20007 (2007)

    Article  ADS  Google Scholar 

  44. R. Delhuille, A. Miffre, E. Lavallette, M. Büchner, C. Rizzo, G. Trénec, J. Vigué, H.J. Loesch, J.P. Gauyacq, Rev. Sci. Instrum. 73, 2249 (2002)

    Article  ADS  Google Scholar 

  45. S. Lepoutre, V.P.A. Lonij, H. Jelassi, G. Trénec, M. Büchner, A.D. Cronin, J. Vigué, Eur. Phys. J. D 62, 309 (2011)

    Article  ADS  Google Scholar 

  46. S. Lepoutre, A. Gauguet, G. Trénec, M. Büchner, J. Vigué, Phys. Rev. Lett. 109, 120404 (2012)

    Article  ADS  Google Scholar 

  47. J. Gillot, S. Lepoutre, A. Gauguet, M. Büchner, J. Vigué, Phys. Rev. Lett. 111, 030401 (2013)

    Article  ADS  Google Scholar 

  48. S. Lepoutre, J. Gillot, A. Gauguet, G. Trénec, M. Büchner, J. Vigué, Phys. Rev. A 88, 043628 (2013)

    Article  ADS  Google Scholar 

  49. M.S. Sorem, A.L. Schawlow, Opt. Commun. 5, 148 (1972)

    Article  ADS  Google Scholar 

  50. G.N. Watson, A treatise on the theory of Bessel functions (Cambridge Mathematical Library, Cambridge, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Büchner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Décamps, B., Gillot, J., Gauguet, A. et al. Phase modulation of atom waves: theory and experiment using the atom optics analogue of the Kerr effect. Eur. Phys. J. D 71, 334 (2017). https://doi.org/10.1140/epjd/e2017-80616-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80616-5

Keywords

Navigation