Heisenberg operator approach for spin squeezing dynamics

  • Aranya Bhuti Bhattacherjee
  • Deepti Sharma
  • Axel Pelster
Regular Article

Abstract

We reconsider the one-axis twisting Hamiltonian, which is commonly used for generating spin squeezing, and treat its dynamics within the Heisenberg operator approach. To this end we solve the underlying Heisenberg equations of motion perturbatively and evaluate the expectation values of the resulting time-dependent Heisenberg operators in order to determine approximately the dynamics of spin squeezing. Comparing our results with those originating from exact numerics reveals that they are more accurate than the commonly used frozen spin approximation.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    C. Gross, J. Phys. B: At. Mol. Opt. Phys. 45, 103001 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89 (2011) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Phys. Rev. A 46, R6797 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A 50, 67 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    E.S. Polzik, Nature 453, 45 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Sorensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    N. Bigelow, Nature 409, 27 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    O. Guehne, G. Toth, Phys. Rep. 474, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Kitagawa, M. Ueda, Phys. Rev. A 47, 5138 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    V. Meyer, M.A. Rowe, D. Kielpinski, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 86, 5870 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Science 304, 1476 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    X. Wang, B.C. Sanders, Phys. Rev. A 68, 012101 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    J.K. Korbicz, J.I. Cirac, M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    S. Yi, H. Pu, Phys. Rev. A 73, 023602 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Science 291, 2386 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    M.F. Riedel, Nature 464, 1170 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J. Esteve, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature 455, 1216 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Juliá-Diaz, M.K. Oberthaler, Phys. Rev. A 92, 023603 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    M. Jaaskelainen, P. Meystre, Phys. Rev. A 73, 013602 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    C.K. Law, H.T. Ng, P.T. Leung, Phys. Rev. A 63, 055601 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    G.R. Jin, S.W. Kim, Phys. Rev. A 76, 043621 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    G.R. Jin, C.K. Law, Phys. Rev. A 78, 063620 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    G.R. Jin, X.W. Wang, Y.W. Lu, J. Phys. B: At. Mol. Opt. Phys. 43, 045301 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    A.B. Bhattacherjee, V. Ranjan, M. Mohan, Int. J. Mod. Phys. B 17, 2579 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    Z.W. Bian, X.B. Lai, Int. J. Theor. Phys. 52, 3922 (2013) CrossRefGoogle Scholar
  28. 28.
    G.J. Hu, X.X. Hu, Int. J. Theor. Phys. 53, 533 (2014) CrossRefGoogle Scholar
  29. 29.
    S.S. Li, H.G. Yi, R.H. Chen, Int. J. Theor. Phys. 52, 1175 (2013) CrossRefGoogle Scholar
  30. 30.
    J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    Y.H. Jiang, S.S. Li, Int. J. Theor. Phys. 52, 2826 (2013) CrossRefGoogle Scholar
  32. 32.
    D. Kajtoch, E. Witkowska, Phys. Rev. A 93, 023627 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    A. Vardi, J.R. Anglin, Phys. Rev. Lett. 86, 568 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    G. Chen, X. Wang, J.Q. Liang, Z.D. Wang, Phys. Rev. A 78, 023634 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations (Gordonand Breach, New York, 1961) Google Scholar
  36. 36.
    N. Minorsky, Nonlinear oscillation (Van Nostrand, Princeton, 1962) Google Scholar
  37. 37.
    R. Mickens, Introduction to nonlinear oscillations (Cambridge University Press, Cambridge, 1981) Google Scholar
  38. 38.
    A. Pelster, H. Kleinert, M. Schanz, Phys. Rev. E 67, 016604 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    I. Vidanovic, A. Balaž, H. Al-Jibbouri, A. Pelster, Phys. Rev. A 84, 013618 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    H. Al-Jibbouri, I. Vidanovic, A. Balaž, A. Pelster, J. Phys. B 46, 065303 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Aranya Bhuti Bhattacherjee
    • 1
  • Deepti Sharma
    • 1
  • Axel Pelster
    • 2
  1. 1.School of Physical Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations