Skip to main content
Log in

Heisenberg operator approach for spin squeezing dynamics

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We reconsider the one-axis twisting Hamiltonian, which is commonly used for generating spin squeezing, and treat its dynamics within the Heisenberg operator approach. To this end we solve the underlying Heisenberg equations of motion perturbatively and evaluate the expectation values of the resulting time-dependent Heisenberg operators in order to determine approximately the dynamics of spin squeezing. Comparing our results with those originating from exact numerics reveals that they are more accurate than the commonly used frozen spin approximation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gross, J. Phys. B: At. Mol. Opt. Phys. 45, 103001 (2012)

    Article  ADS  Google Scholar 

  2. J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Phys. Rev. A 46, R6797 (1992)

    Article  ADS  Google Scholar 

  4. D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A 50, 67 (1994)

    Article  ADS  Google Scholar 

  5. E.S. Polzik, Nature 453, 45 (2008)

    Article  ADS  Google Scholar 

  6. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  7. A. Sorensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001)

    Article  ADS  Google Scholar 

  8. N. Bigelow, Nature 409, 27 (2001)

    Article  ADS  Google Scholar 

  9. O. Guehne, G. Toth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Kitagawa, M. Ueda, Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  11. Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  12. V. Meyer, M.A. Rowe, D. Kielpinski, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 86, 5870 (2001)

    Article  ADS  Google Scholar 

  13. D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Science 304, 1476 (2004)

    Article  ADS  Google Scholar 

  14. X. Wang, B.C. Sanders, Phys. Rev. A 68, 012101 (2003)

    Article  ADS  Google Scholar 

  15. J.K. Korbicz, J.I. Cirac, M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005)

    Article  ADS  Google Scholar 

  16. S. Yi, H. Pu, Phys. Rev. A 73, 023602 (2006)

    Article  ADS  Google Scholar 

  17. C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Science 291, 2386 (2001)

    Article  ADS  Google Scholar 

  18. M.F. Riedel, Nature 464, 1170 (2010)

    Article  ADS  Google Scholar 

  19. J. Esteve, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature 455, 1216 (2008)

    Article  ADS  Google Scholar 

  20. W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Juliá-Diaz, M.K. Oberthaler, Phys. Rev. A 92, 023603 (2015)

    Article  ADS  Google Scholar 

  21. M. Jaaskelainen, P. Meystre, Phys. Rev. A 73, 013602 (2006)

    Article  ADS  Google Scholar 

  22. C.K. Law, H.T. Ng, P.T. Leung, Phys. Rev. A 63, 055601 (2001)

    Article  ADS  Google Scholar 

  23. G.R. Jin, S.W. Kim, Phys. Rev. A 76, 043621 (2007)

    Article  ADS  Google Scholar 

  24. G.R. Jin, C.K. Law, Phys. Rev. A 78, 063620 (2008)

    Article  ADS  Google Scholar 

  25. G.R. Jin, X.W. Wang, Y.W. Lu, J. Phys. B: At. Mol. Opt. Phys. 43, 045301 (2010)

    Article  ADS  Google Scholar 

  26. A.B. Bhattacherjee, V. Ranjan, M. Mohan, Int. J. Mod. Phys. B 17, 2579 (2003)

    Article  ADS  Google Scholar 

  27. Z.W. Bian, X.B. Lai, Int. J. Theor. Phys. 52, 3922 (2013)

    Article  Google Scholar 

  28. G.J. Hu, X.X. Hu, Int. J. Theor. Phys. 53, 533 (2014)

    Article  Google Scholar 

  29. S.S. Li, H.G. Yi, R.H. Chen, Int. J. Theor. Phys. 52, 1175 (2013)

    Article  Google Scholar 

  30. J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004)

    Article  ADS  Google Scholar 

  31. Y.H. Jiang, S.S. Li, Int. J. Theor. Phys. 52, 2826 (2013)

    Article  Google Scholar 

  32. D. Kajtoch, E. Witkowska, Phys. Rev. A 93, 023627 (2016)

    Article  ADS  Google Scholar 

  33. A. Vardi, J.R. Anglin, Phys. Rev. Lett. 86, 568 (2001)

    Article  ADS  Google Scholar 

  34. G. Chen, X. Wang, J.Q. Liang, Z.D. Wang, Phys. Rev. A 78, 023634 (2008)

    Article  ADS  Google Scholar 

  35. N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations (Gordonand Breach, New York, 1961)

  36. N. Minorsky, Nonlinear oscillation (Van Nostrand, Princeton, 1962)

  37. R. Mickens, Introduction to nonlinear oscillations (Cambridge University Press, Cambridge, 1981)

  38. A. Pelster, H. Kleinert, M. Schanz, Phys. Rev. E 67, 016604 (2003)

    Article  ADS  Google Scholar 

  39. I. Vidanovic, A. Balaž, H. Al-Jibbouri, A. Pelster, Phys. Rev. A 84, 013618 (2011)

    Article  ADS  Google Scholar 

  40. H. Al-Jibbouri, I. Vidanovic, A. Balaž, A. Pelster, J. Phys. B 46, 065303 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranya Bhuti Bhattacherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacherjee, A.B., Sharma, D. & Pelster, A. Heisenberg operator approach for spin squeezing dynamics. Eur. Phys. J. D 71, 337 (2017). https://doi.org/10.1140/epjd/e2017-80534-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80534-6

Keywords

Navigation