Skip to main content
Log in

Impact of higher order dispersion and nonlinearities on modulational instability in a dual-core optical fiber

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this investigation, we examine theoretically modulational instability (MI) in a dual-core optical fiber with higher order dispersion as well as higher order nonlinear effects. For dual-core or multicore optical fiber the investigation of MI analysis extends with parameters like linear coupling coefficient and coupling coefficient dispersion using extended coupled nonlinear Schrödinger equation. We analyze the impact of these parameters on MI gain spectrum at anomalous and normal dispersion regime along with higher order parameters. Our results show that the combined effect of higher order dispersion like fourth order dispersion and nonlinear parameter like self-steepening effect due to cubic–quintic nonlinearity, stimulated Raman response which is inevitable for the study of ultrashort pulse propagation and generation of the soliton. The study reveals that the frequency selection of MI gain is primarily controlled by the dispersion parameters while nonlinear parameters restrict the intensity and bandwidth of the MI gain. Though most of the distinguishable effects are observed in anomalous dispersion regime due to the presence of higher order parameters decent gain is also visible in the normal dispersion regime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Agrawal, Nonlinear fiber optics, 4th edn. (Academic Press, SanDiego, 2007)

  2. P.K. Shukla, J. Juul Rasmussen, Opt. Lett. 11, 171 (1986)

    Article  ADS  Google Scholar 

  3. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986)

    Article  ADS  Google Scholar 

  4. K. Tai, A. Tomita, J.L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986)

    Article  ADS  Google Scholar 

  5. Q. Li, F. Li, K.K.Y. Wong, A.P.T. Lau, K.K. Tsia, P.K.A. Wai, Opt. Express 19, 13757 (2011)

    Article  ADS  Google Scholar 

  6. A. Demircan, U. Bandelow, Opt. Commun. 244, 181 (2005)

    Article  ADS  Google Scholar 

  7. A. Choudhuri, K. Porsezian, Phys. Rev. A 85, 033820.1 (2012)

    Article  ADS  Google Scholar 

  8. A. Mohamadau, P.H. Tatsing, C.G.L. Tiofack, C.B. Tabi, T.C. Kofane, J. Mod. Opt. 61, 1670 (2014)

    Article  ADS  Google Scholar 

  9. F. Biancalana, D.V. Skryabin, J. Opt. A Pure. Appl. Opt. 6, 301 (2004)

    Article  ADS  Google Scholar 

  10. A. Hasegawa, Opt. Lett. 9, 288 (1984)

    Article  ADS  Google Scholar 

  11. S. Wabnitz, Phys. Rev. A 38, 2018 (1988)

    Article  ADS  Google Scholar 

  12. N. Li, X. Fu, J. Mod. Opt. 62, 908 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.M. SotoCrespo, E.M. Wright, Appl. Phys. Lett. 59, 2489 (1991)

    Article  ADS  Google Scholar 

  14. F.K. Abdullaev, S.A. Darmanyan, S. Bischoff, M.P. S∅rensen, J. Opt. Soc. Am. B 14, 27 (1997)

    Article  ADS  Google Scholar 

  15. E. Seve, P.T. Dinda, G. Millot, M. Remoissenet, Phys. Rev. A 54, 3519 (1996)

    Article  ADS  Google Scholar 

  16. M.N.Z. Abou’ou, P.T. Dinda, C.M. Ngabireng, S. Pitois, B. Kibler, Phys. Rev. A 87, 033803.1 (2013)

    ADS  Google Scholar 

  17. J.H. Li, K.S. Chiang, B.A. Malomed, K.W. Chow, J. Phys. B: At. Mol. Opt. Phys. 45, 165404.1 (2012)

    Google Scholar 

  18. W.-P. Hong, Opt. Commun. 213, 173 (2002)

    Article  ADS  Google Scholar 

  19. F.I.I. Ndzana, A. Mohamadou, T.C. Kofane, Opt. Commun. 275, 421 (2007)

    Article  ADS  Google Scholar 

  20. X. Zhong, K. Cheng, Optik 125, 6733 (2014)

    Article  ADS  Google Scholar 

  21. M. Saha, A.K. Sarma, Opt. Commun. 291, 321 (2013)

    Article  ADS  Google Scholar 

  22. A. Mohamadou, C.G.L. Tiofack, T.C. Kofane, Phys. Rev. E 82, 016601.1 (2010)

    Article  ADS  Google Scholar 

  23. J.H. Li, K.S. Chiang, K.W. Chow, J. Opt. Soc. Am. B 28, 1693 (2011)

    Article  ADS  Google Scholar 

  24. J.H. Li, K.S. Chiang, K.W. Chow, Opt. Commun. 318, 11 (2014)

    Article  ADS  Google Scholar 

  25. K. Nithyanandan, R.V.J. Raja, K. Porsezian, Phys. Rev. A 87, 043805.1 (2013)

    Article  ADS  Google Scholar 

  26. B.L. Baldeck, R.R. Alfano, G.P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988)

    Article  ADS  Google Scholar 

  27. K. Saitoh, Y. Sato, M. Koshiba, Opt. Express 11, 3188 (2003)

    Article  ADS  Google Scholar 

  28. A.W. Snyder, J. Opt. Soc. Am. 62, 1267 (1972)

    Article  ADS  Google Scholar 

  29. S. Trillo, S. Wabnitz, G.I. Stegeman, E.M. Wright, J. Opt. Soc. Am. B 6, 889 (1989)

    Article  ADS  Google Scholar 

  30. R.S. Tasgal, B. Malomed, Phys. Scr. 60, 418 (1999)

    Article  ADS  Google Scholar 

  31. R. Ganapathy, B.A. Malomed, K. Porsezian, Phys. Lett. A 354, 366 (2006)

    Article  ADS  Google Scholar 

  32. R.H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978)

    Article  ADS  Google Scholar 

  33. B.A. Malomed, I.M. Skinner, R.S. Tasgal, Opt. Commun. 139, 247 (1997)

    Article  ADS  Google Scholar 

  34. Y. Wang, W. Wang, J. Lightwave Technol. 24, 1041 (2006)

    Article  ADS  Google Scholar 

  35. R. Radhakrishnan, A. Kundu, M. Lakshmanan, Phys. Rev. E 60, 3314 (1999)

    Article  ADS  Google Scholar 

  36. K.S. Chiang, Opt. Lett. 20, 997 (1995)

    Article  ADS  Google Scholar 

  37. K. Nithyanandan, K. Porsezian, Opt. Commun. 303, 46 (2013)

    Article  ADS  Google Scholar 

  38. A.K.S. Ali, K. Porsezian, T. Uthayakumar, Phys. Rev. E 90, 042910.1 (2014)

    ADS  Google Scholar 

  39. E.O. Alves, W.B. Cardoso, A.T. Avelar, J. Opt. Soc. Am. B 33, 1134 (2016)

    Article  ADS  Google Scholar 

  40. V.K. Sharma, A. Goyal, T.S. Raju, C.N. Kumar, P.K. Panigrahi, Opt. Fiber Technol. 24, 119 (2015)

    Article  ADS  Google Scholar 

  41. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, Opt. Commun. 219, 427 (2003)

    Article  ADS  Google Scholar 

  42. A.K. Atieh, P. Myslinski, J. Chrostowski, P. Galko, J. Lightwave Technol. 17, 216 (1999)

    Article  ADS  Google Scholar 

  43. M.N.Z. Abou’ou, P.T. Dinda, C.M. Ngabireng, B. Kibler, F. Smektala, J. Opt. Soc. Am. B 28, 1518 (2011)

    Article  ADS  Google Scholar 

  44. P.T. Dinda, C.M. Ngabireng, K. Porsezian, B. Kalithasan, Opt. Commun. 266, 142 (2006)

    Article  ADS  Google Scholar 

  45. H. Triki, A. Biswas, D. Milovic, M. Belic, Opt. Commun. 366, 362 (2016)

    Article  ADS  Google Scholar 

  46. S. Pitois, G. Millot, Opt. Commun. 226, 415 (2003)

    Article  ADS  Google Scholar 

  47. M.J. Potasek, Opt. Express 12, 921 (1987)

    Google Scholar 

  48. S. Mumtaz, R.-J. Essiambre, G.P. Agrawal, IEEE Photon. Technol. Lett. 24, 1574 (2012)

    Article  ADS  Google Scholar 

  49. F. Ye, K. Saitoh, H. Takara, R. Asif, T. Morioka, in Proc. 2015 Optical Fiber Communications Conference and Exhibition (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna A. Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.A., Porsezian, K. & Jayaraju, M. Impact of higher order dispersion and nonlinearities on modulational instability in a dual-core optical fiber. Eur. Phys. J. D 72, 6 (2018). https://doi.org/10.1140/epjd/e2017-80437-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80437-6

Keywords

Navigation