Skip to main content
Log in

Electron–positron pair creation by counterpropagating laser pulses: role of carrier envelope phase

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of carrier envelope phase (CEP) on the spatio-temporal distribution of electron–positron pairs created by ultra-intense counterpropagating femtosecond laser pulses is studied. When the laser pulses are linearly polarized, the temporal distribution of the pairs is found to be sensitive with CEP. Same analysis is also done for the counterpropagating circularly e-polarized laser pulses. It is seen that when the counterpropagating laser pulses are both right (left) circularly polarized, the effect of the CEP is insignificant. On the other hand when the superimposed fields are in the combination of right and left circular polarizations, the CEP dependence comes in the invariant electric and magnetic fields structure and hence it reflects in the particle–antiparticle temporal distribution. However, the average number of total pairs is not greatly influenced by CEP for both the polarizations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Di Piazza et al., Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  2. F. Sauter, Z. Phys. 69, 742 (1931)

    Article  ADS  Google Scholar 

  3. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  Google Scholar 

  4. N. Narozhnyi, A. Nikishov, Yadern. Fiz. 11, 1072 (1970)

    Google Scholar 

  5. E. Brezin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  6. S.S. Bulanov, Phys. Rev. E 69, 036408 (2004)

    Article  ADS  Google Scholar 

  7. S.S. Bulanov et al., Phys. Rev. Lett. 104, 220404 (2010)

    Article  ADS  Google Scholar 

  8. M. Dunne, Nat. Phys. 2, 2 (2006)

    Article  Google Scholar 

  9. T. Tajima, G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002)

    Article  ADS  Google Scholar 

  10. N. Narozhny, M. Fofanov, JETP 90, 753 (2000)

    Article  ADS  Google Scholar 

  11. A. Fedotov, Laser Phys. 19, 214 (2009)

    Article  ADS  Google Scholar 

  12. Y.I. Salamin, G.R. Mocken, C.H. Keitel, Phys. Rev. ST Accel. Beams 5, 101301 (2002)

    Article  ADS  Google Scholar 

  13. I. Gonoskov et al., Phys. Rev. A 86, 053836 (2012)

    Article  ADS  Google Scholar 

  14. A. Gonoskov et al., Phys. Rev. Lett. 111, 060404 (2013)

    Article  ADS  Google Scholar 

  15. S. Bulanov et al., JETP 102, 9 (2006)

    Article  ADS  Google Scholar 

  16. W. Su et al., Phys. Rev. A 86, 013422 (2012)

    Article  ADS  Google Scholar 

  17. Q. Su et al., Phys. Rev. Lett. 109, 253202 (2012)

    Article  ADS  Google Scholar 

  18. N. Abdukerim, Z.L. Li, B.S. Xie, Phys. Lett. B 726, 820 (2013)

    Article  ADS  Google Scholar 

  19. M. Orthaber, F. Hebenstreit, R. Alkofer, Phys. Lett. B 698, 80 (2011)

    Article  ADS  Google Scholar 

  20. C.K. Dumlu, Phys. Rev. D 82, 045007 (2010)

    Article  ADS  Google Scholar 

  21. N. Abdukerim, Z.L. Li, B.S. Xie, Chin. Phys. B 26, 020301 (2017)

    Article  ADS  Google Scholar 

  22. I. Sitiwaldi, B.S. Xie, Phys. Lett. B 768, 174 (2017)

    Article  ADS  Google Scholar 

  23. C. Kohlfürst et al., Phys. Rev. D 88, 045028 (2013)

    Article  ADS  Google Scholar 

  24. M. Ruf et al., Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  25. F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 82, 105026 (2010)

    Article  ADS  Google Scholar 

  26. E.N. Nerush et al., Phys. Rev. Lett. 106, 035001 (2011)

    Article  ADS  Google Scholar 

  27. A. Di Piazza et al., Phys. Rev. Lett. 103, 170403 (2009)

    Article  ADS  Google Scholar 

  28. A. Wöllert, H. Bauke, C.H. Keitel, Phys. Rev. D 91, 125026 (2015)

    Article  ADS  Google Scholar 

  29. F. Mackenroth, A. Di Piazza, C.H. Keitel, Phys. Rev. Lett. 105, 063903 (2010)

    Article  ADS  Google Scholar 

  30. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  31. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  32. F. Hebenstreit et al., Phys. Rev. Lett. 102, 150404 (2009)

    Article  ADS  Google Scholar 

  33. C. Banerjee, M.P. Singh, JETP 125, 12 (2017)

    Article  ADS  Google Scholar 

  34. V.F. Bashmakov et al., Phys. Plasmas 21, 013105 (2014)

    Article  ADS  Google Scholar 

  35. A. Nikishov, Sov. Phys. JETP 30, 660 (1970)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitradip Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, C., Singh, M.P. Electron–positron pair creation by counterpropagating laser pulses: role of carrier envelope phase. Eur. Phys. J. D 72, 4 (2018). https://doi.org/10.1140/epjd/e2017-80399-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80399-7

Keywords

Navigation