Skip to main content
Log in

Collapse of the surface dusty plasma waves under the plasma–beam instability

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of the dusty plasma–dusty beam instability is investigated in the dusty plasma waveguides bounded by dielectrics. The dusty plasma includes the positive ions as the light component and the negative dust as the heavy component. A beam of dust particles moves along the waveguide. The set of hydrodynamic equations for the dust and beam particles, namely, the continuity equations and the equations for the momentum jointly with the Poisson one are used. The Boltzmann distribution is used for the ions. The electric and hydrodynamic boundary conditions are applied at the interfaces. The simulations have demonstrated that the dusty sound waves of small amplitudes are the subject to amplification with a high increment due to the convective instability, even when the concentration of the beam particles is ≤0.1 of the uniform dust concentration. The amplification very rapidly transits to the regime of strong surface nonlinearity, and near the interfaces the variations of the dust concentration reach extremely high values, where the collapse of the beam dust component occurs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. P.K. Shukla, A.A. Mamun, Introduction to dusty plasma physics (IoP Publ., Bristol, UK, 2002)

  3. P.K. Shukla, Phys. Plasmas 8, 1791 (2001)

    Article  ADS  Google Scholar 

  4. F. Verheest, Waves in dusty space plasmas (Kluwer, Dordrecht, Netherlands, 2001)

  5. P.K. Shukla, A.A. Mamun, New J. Phys. 5, 17.1 (2003)

    Google Scholar 

  6. N.Ya. Kotsarenko, S.V. Koshevaya, A.N. Kotsarenko, Geofis. Int. 37, 71 (1998)

    Google Scholar 

  7. P. Bliokh, V. Sinitsyn, V. Yaroshenko, Dusty and self-gravitational plasmas in space (Kluwer, Dordrecht, Netherlands, 1995)

  8. M. Ferdousi, Sh. Sultana, M. Mobarak Hossen, Md. Rashed Miah, A.A. Mamun, Eur. Phys. J. D 71, 102 (2017)

    Article  ADS  Google Scholar 

  9. T.A. Ellis, J.S. Neff, Icarus 91, 280 (1991)

    Article  ADS  Google Scholar 

  10. M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996)

    Article  ADS  Google Scholar 

  11. O. Havnes, J. Tr∅im, T. Blix, W. Mortensen, L. Næsheim, E. Thrane, T. T∅nnesen, J. Geophys. Res. 101, 10839 (1996)

    Article  ADS  Google Scholar 

  12. F.S. Ali, M.A. Ali, R.A. Ali, I.I. Inculet, J. Electrost. 45, 139 (1998)

    Article  Google Scholar 

  13. K. Singh, N. Kaur, N.S. Saini, Phys. Plasmas 24, 063703 (2017)

    Article  ADS  Google Scholar 

  14. E.K. El-Shewy, H.G. Abdelwahed, N.F. Abdo, R.A. Shahein, Moscow Univ. Phys. Bull. 71, 284 (2016)

    Article  ADS  Google Scholar 

  15. H. Zhao, G.S.P. Castle, I.I. Inculet, J. Electrost. 55, 261 (2002)

    Article  Google Scholar 

  16. H. Zhao, G.S.P. Castle, I.I. Inculet, A.G. Bailey, IEEE Trans. Ind. Appl. 39, 612 (2003)

    Article  Google Scholar 

  17. A. Barkan, N. D’Angelo, R. Merlino, Planet. Space Sci. 44, 239 (1996)

    Article  ADS  Google Scholar 

  18. R.L. Merlino, A. Barkan, C. Thompson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)

    Article  ADS  Google Scholar 

  19. S.I. Popel, S.I. Kopnin, I.N. Kosarev, M.Y. Yu, Adv. Space Res. 37, 414 (2006)

    Article  ADS  Google Scholar 

  20. K.N. Ostrikov, M.Y. Yu, L. Stenflo, Phys. Rev. E 61, 782 (2000)

    Article  ADS  Google Scholar 

  21. S.I. Kopnin, S.I. Popel, AIP Conf. Proc. 799, 161 (2005)

    Article  ADS  Google Scholar 

  22. S.I. Popel, A.P. Golub’, T.V. Losseva, Phys. Plasmas 8, 1497 (2001)

    Article  ADS  Google Scholar 

  23. V.E. Fortov, A.D. Usachev, A.V. Zobnin et al., Phys. Plasmas 10, 1199 (2003)

    Article  ADS  Google Scholar 

  24. A.E. Dubinov, I.N. Kitayev, Phys. Plasmas 23, 104503 (2016)

    Article  ADS  Google Scholar 

  25. R. Bharuthram, P.K. Shukla, Planet. Space Sci. 41, 17 (1993)

    Article  ADS  Google Scholar 

  26. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 22, 022125 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 23, 104501 (2016)

    Article  ADS  Google Scholar 

  28. H.C. Barr, T.J.M. Boyd, J. Phys. A: Gen. Phys. 5, 1108 (1972)

    Article  ADS  Google Scholar 

  29. O.M. Gradov, L. Stenflo, Phys. Rep. 94, 111 (1983)

    Article  ADS  Google Scholar 

  30. O.M. Gradov, L. Stenflo, M.Y. Yu, IEEE Trans. Plasma Sci. 21, 582 (1993)

    Article  ADS  Google Scholar 

  31. O.M. Gradov, L. Stenflo, P.K. Shukla, Phys. Plasmas 10, 1526 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Stenflo, O.M. Gradov, Phys. Plasmas 1, 2804 (1994)

    Article  ADS  Google Scholar 

  33. L. Stenflo, Phys. Scr. T63, 59 (1996)

    Article  ADS  Google Scholar 

  34. H.J. Lee, M.-J. Lee, J. Mod. Phys. 7, 1400 (2016)

    Article  Google Scholar 

  35. O.M. Gradov, L. Stenflo, Phys. Fluids 25, 983 (1982)

    Article  ADS  Google Scholar 

  36. V.V. Grimal’skii, Yu.G. Rapoport, Plasma Phys. Rep. 24, 980 (1998)

    ADS  Google Scholar 

  37. M.E. Bustos De La Rosa, V. Grimalsky, S. Koshevaya, A. Kotsarenko, in Progress in Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, August 12–15 (2013), p. 1463, http://piers.org/piersproceedings/piers2013StockholmProc.php

  38. E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics (Pergamon, London, UK, 1981)

  39. A. Sitenko, V. Malnev, Plasma physics theory (Chapman & Hall, London, UK, 1994)

  40. A.B. Mikhailovskii, Theory of plasma instabilities (Springer, N.Y., 1974), 2 Volumes

  41. K. Quest, M. Rosenberg, B. Kercher, M. Dutreix, J. Plasma Phys. 82, 905820602 (2016)

    Article  Google Scholar 

  42. S. Sarkar, M. Bose, S. Mukherjee, J. Pramanik, Phys. Plasmas 20, 064502 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Grimalsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimalsky, V., Kotsarenko, A., Koshevaya, S. et al. Collapse of the surface dusty plasma waves under the plasma–beam instability. Eur. Phys. J. D 71, 320 (2017). https://doi.org/10.1140/epjd/e2017-80397-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80397-9

Keywords

Navigation