Skip to main content
Log in

On super-elastic collisions between magnetized plasmoids in the heliosphere

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Recently, a unique collision between two large-scale magnetized plasmoids produced by coronal mass ejections in the heliosphere has been observed [C. Shen et al., Nat. Phys. 8, 923 (2012)]. Results suggest that the collision is super-elastic, i.e. the total linear kinetic energy of the two plasmoids after the collision is larger than before the collision, and that an anti-correlation exists, i.e. the lower the initial relative velocity of the plasmoids, the larger the relative increase in total kinetic energy. Following an old suggestion of Bostick [IEEE Trans. Plasma Sci. PS-14, 703 (1986)], here we start from first principles, retrieve some results of Ohsaki et al. [Astrophys. J. Lett. 559, L61 (2001)] and Kagan et al. [Mon. Not. R. Astron. Soc. 406, 1140 (2010)] and show that the anti-correlation is just a consequence of the properties of Joule and viscous dissipation inside the plasmoids. On the other end, if the initial relative velocity of the plasmoids is greater than the Alfvèn velocity times the global reconnection rate, then the plasmoids merge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Shen, Y. Wang, S. Wang, Y. Liu, R. Liu, A. Vourildas, B. Miao, P. Ye, J. Liu, Zh. Zhou, Nat. Phys. 8, 923 (2012)

    Article  Google Scholar 

  2. P.J. Cargill, G.W. Pneuman, Astrophys. J. 307, 820 (1986)

    Article  ADS  Google Scholar 

  3. W. Mishra, N. Srivastava, T. Singh, J. Geophys. Res. 120, 10221 (2015)

    Article  Google Scholar 

  4. W.H. Bostick, Phys. Rev. 104, 292 (1956)

    Article  ADS  Google Scholar 

  5. A. Di Vita, Eur. Phys. J. D 54, 451 (2009)

    Article  ADS  Google Scholar 

  6. M.Y. Louge, M.E. Adams, Phys. Rev. E 65, 021303 (2002)

    Article  ADS  Google Scholar 

  7. F. Shen, Y. Wang, C. Shen, X. Feng, Sci. Rep. 6, 19576 (2016)

    Article  ADS  Google Scholar 

  8. W.H. Bostick, IEEE Trans. Plasma Sci. PS-14, 703 (1986)

    Article  ADS  Google Scholar 

  9. A. Di Vita, Eur. Phys. J. D 56, 205 (2010)

    Article  ADS  Google Scholar 

  10. E.A. Witalis, IEEE Trans. Plasma Sci. PS-14, 842 (1986)

    Article  ADS  Google Scholar 

  11. L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Sol. Phys. 239, 393 (2006)

    Article  ADS  Google Scholar 

  12. Y.F. Zhou, X.S. Feng, S.T. Wu, D. Du, F. Shen, C.Q. Yiang, J. Geophys. Res. 117, A01102 (2012)

    Article  ADS  Google Scholar 

  13. F. Sheng, C. Shen, Y. Wang, X. Feng, C. Xiang, Geophys. Res. Lett. 40, 1457 (2013)

    Article  ADS  Google Scholar 

  14. Y. Wang, Z. Zhou, C. Shen, R. Liu, S. Wang, J. Geophys. Res. 120, 1543 (2015)

    Article  Google Scholar 

  15. S.I. Braginskii, Transport processes in a plasma, in Reviews of plasma physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205

  16. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1916)

  17. S.R. DeGroot, P. Mazur, Non-equilibrium thermodynamics (Dover, New York, 1962)

  18. A.H. Boozer, J. Plasma Phys. 35, 133 (1986)

    Article  ADS  Google Scholar 

  19. M.G. Haines, P.D. LePell, C.A. Coverdale, B. Jones, C. Deeney, J.P. Apruzese, Phys. Rev. Lett. 96, 075003 (2006)

    Article  ADS  Google Scholar 

  20. J. Birn, M. Hesse, K. Schindler, J. Geophys. Res. 94, 241 (1989)

    Article  ADS  Google Scholar 

  21. F. Herrmann, Eur. J. Phys. 7, 130 (1986)

    Article  Google Scholar 

  22. E.T. Jaynes, Annu. Rev. Phys. Chem. 31, 579 (1980)

    Article  ADS  Google Scholar 

  23. L.D. Landau, E. Lifshitz, Electrodynamics of continuous media (Pergamon, Oxford, 1960)

  24. I.V. Elsgolts, Differential equations and variational calculus (Mir, Paris, 1981)

  25. A. Di Vita, Phys. Rev. E 81, 041137 (2010)

    Article  ADS  Google Scholar 

  26. D. Kagan, S.M. Mahajan, Mon. Not. R. Astron. Soc. 406, 1140 (2010)

    ADS  Google Scholar 

  27. S. Ohsaki, N.L. Shatashvili, Z. Yoshida, Astrophys. J. Lett. 559, L61 (2001)

    Article  ADS  Google Scholar 

  28. L. Turner, IEEE Trans. Plasma Sci. PS-14, 849 (1986)

    Article  ADS  Google Scholar 

  29. S.K.H. Auluck, Phys. Plasmas 16, 122504 (2009)

    Article  ADS  Google Scholar 

  30. S.K.H. Auluck, Phys. Plasmas 18, 032508 (2011)

    Article  ADS  Google Scholar 

  31. A. Di Vita, Eur. Phys. J. D 67, 191 (2013)

    Article  ADS  Google Scholar 

  32. J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)

    Article  ADS  Google Scholar 

  33. Z. Yoshida, S.M. Mahajan, Phys. Rev. Lett. 88, 095001 (2002)

    Article  ADS  Google Scholar 

  34. H.A.B.Bodin, A.A. Newton, Nucl. Fusion 20, 1255 (1980)

    Article  ADS  Google Scholar 

  35. P.M. Bellan, Spheromaks (Imperial College Press, London, 2000)

  36. B.C. Low, Phys. Plasmas 1, 1684 (1994)

    Article  ADS  Google Scholar 

  37. A. Koenigl, A.R. Choudhuri, Astrophys. J. 289, 173 (1985)

    Article  ADS  Google Scholar 

  38. R.L. Stenzel, J.M. Urrutia, C.L. Rousculp, Phys. Rev. Lett. 74, 702 (1995)

    Article  ADS  Google Scholar 

  39. E.A. Witalis, Magnetised whirls in PF discharges, in Energy storage, compression and switching, edited by V. Nardi, H. Sahlin, W.H. Bostick (Plenum, New York, 1978)

  40. D. Shaikh, B. Dasgupta, G.P. Zank, Q. Hu, Phys. Plasmas 15, 012306 (2008)

    Article  ADS  Google Scholar 

  41. B. Dasgupta, P. Dasgupta, J.S. Mylavarapu, T. Watanabe, T. Sato, J. Plasma Fusion Res. Ser. 2, 516 (1999)

    Google Scholar 

  42. T. Amari, A. Canou, J.J. Aly, Nature 514, 465 (2014)

    Article  ADS  Google Scholar 

  43. D.F. Escande, S. Cappello, F. D’Angelo, C. Marchetto, P. Paccagnella, D. Benisti, The reversed field pinch as a magnetically quiet and non-chaotic configuration, in Proc. XVIII IAEA Fusion Energy Conference, Sorrento, Italy, 4–10 October 2000 (2000)

  44. H.A.B. Bodin, Energy 29, 57 (1990)

    Google Scholar 

  45. H. Herold, A. Jerzykiewicz, M. Sadowski, H. Schmidt, Nucl. Fusion 29, 1255 (1989)

    Article  Google Scholar 

  46. A. Bernard, H. Bruzzone, P. Choi, H. Chuaqui, V. Gribkov, J. Herrera, K. Hirano, A. Krejcì, S. Lee, C. Luo, F. Mezzetti, M. Sadowski, H. Schmidt, K. Ware, C.S. Wong, W. Zoita, J. Mosc. Phys. Soc. 8, 93 (1998)

    Google Scholar 

  47. L. Soto, Plasma Phys. Control. Fusion 47, A361 (2005)

    Article  ADS  Google Scholar 

  48. L. Soto, C. Pavez, F. Castillo, F. Veloso, J. Moreno, S.K.H. Auluck, Phys. Plasmas 21, 072702 (2014)

    Article  ADS  Google Scholar 

  49. L. Jakubowski, M.J. Sadowski, Braz. J. Phys. 32, 1871 (2002)

    Article  Google Scholar 

  50. H. Alfvèn, Cosmical electrodynamics (Clarendon Press, Oxford, 1950)

  51. J.W. Connor, J.B. Taylor, Nucl. Fusion 17, 1047 (1977)

    Article  ADS  Google Scholar 

  52. Y. Ono, Nucl. Fusion 39, 2001 (1999)

    Article  ADS  Google Scholar 

  53. S.M. Mahajan, Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998)

    Article  ADS  Google Scholar 

  54. K. Miyamoto, Plasma physics and controlled nuclearfusion (Springer, Berlin, 2005)

  55. H. Karimabadi, J. Dorelli, V. Roytershteyn, W. Daughton, L. Chacon, Phys. Rev. Lett. 107, 025002 (2011)

    Article  ADS  Google Scholar 

  56. T. Tajima, J. Sakai, H. Nakajima, T. Kosugi, F. Brunel, M.R. Kundu, Astrophys. J. 321, 1031 (1987)

    Article  ADS  Google Scholar 

  57. M. Karlicky, M. Barta, Astrophys. J. 733, 107 (2011)

    Article  ADS  Google Scholar 

  58. P. Jelinek, M. Karlicky, T. Van Doorsselaere, M. Barta, arXiv:1703.06674v2 (2017)

  59. R. Milligan, R.T. James McAteer, B.R. Dennis, C.A. Young, Astrophys. J. 713, 1292 (2010)

    Article  ADS  Google Scholar 

  60. A. Singh, V. Magnanimo, S. Luding, arXiv:1503.03720v1 (2015)

  61. A. Stanier, W. Daughton, L. Chacon, H. Karimabadi, J. Ng, Y.M. Huang, A. Hakim, A. Bhattacharjee, Phys. Rev. Lett. 115, 175004 (2015)

    Article  ADS  Google Scholar 

  62. J. Ng, Y.M. Huang, A. Hakim, A. Bhattacharjee, A. Stanier, W. Daughton, L. Wang, K. Germaschewski, Phys. Plasmas 22, 112104 (2015)

    Article  ADS  Google Scholar 

  63. P.A. Cassak, Y.H. Liu, M.A. Shay, arXiv:1708.03449v1 (2017)

  64. L. Comisso, A. Bhattacharjee, J. Plasma Phys. 82, 595820601 (2016)

    Article  Google Scholar 

  65. Y.H. Liu, M. Hesse, F. Guo, W. Daughton, H. Li, P.A. Cassak, M.A. Shay, Phys. Rev. Lett. 118, 085101 (2017)

    Article  ADS  Google Scholar 

  66. M. Temmer, A.M. Veronig, V. Peinhart, Astrophys. J. 785, 85 (2014)

    Article  ADS  Google Scholar 

  67. M. Hesse, T.G. Forbes, J. Birn, Astrophys. J. 631, 1227 (2005)

    Article  ADS  Google Scholar 

  68. R. Bhattacharyya, M.S. Janaki, B. Dasgupta, Phys. Lett. A 315, 120 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Di Vita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Vita, A. On super-elastic collisions between magnetized plasmoids in the heliosphere. Eur. Phys. J. D 72, 7 (2018). https://doi.org/10.1140/epjd/e2017-80365-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80365-5

Keywords

Navigation