Enhanced energy transfer efficiency in a four-electrodes configuration DBD plasma jet

  • Fellype do Nascimento
  • Munemasa Machida
  • Konstantin Kostov
  • Stanislav Moshkalev
  • Roberto Y. Honda
  • Rogério P. Mota
  • Thalita M. C. Nishime
  • Alonso H. R. Castro
Regular Article
  • 29 Downloads

Abstract

In this work a dielectric barrier discharge (DBD) plasma jet that uses a multiple electrodes configuration is investigated. The results show that both plasma power and its rotational and vibrational temperatures tend to increase with the number of powered electrodes in the DBD device. The emission intensities of the excited species in the plasma, and consequently their number density, also grow as a function of the number of powered electrodes. Based on these facts and since the electric power provided by the power supply was kept constant, there is an indication that the use of multiple electrodes improves the energy efficiency of the device.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, J. Coat. Technol. Res. 12, 225 (2015) CrossRefGoogle Scholar
  2. 2.
    K.-D. Weltmann, Th. von Woedtke, Plasma Phys. Control. Fusion, 59, 012031 (2017) CrossRefGoogle Scholar
  3. 3.
    S. Wu, Y. Cao, X. Lu, IEEE Trans. Plasma Sci. 44, 134 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    J. Winter, R. Brandenburg, K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    H.R. Kang, T.H. Chung, H.M. Joh, S.J. Kim, IEEE Trans. Plasma Sci. 45, 691 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Appl. Surf. Sci. 390, 489 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    C.-T. Liu, K.-Y. Cheng, Zh.-H. Lin, C.-J. Wu, J.-Y. Wu, J.-S. Wu, IEEE Trans. Plasma Sci. 44, 3196 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    O. Birer, Appl. Surf. Sci. 354, 420 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    T. Wang, B. Yang, X. Chen, X. Wang, C. Yang, J. Liu, Plasma Process. Polym. (early preview) Google Scholar
  10. 10.
    A. Yamamoto, Y. Kuwano, M. Nakai, T. Nakagawa, T. Sakugawa, H. Hosseini, H. Akiyama, IEEE Trans. Plasma Sci. 43, 3451 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    S. Wang, J. Zhang, G. Li, D. Wang, Vacuum 101, 317 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    H. Nizard, T. Gaudy, A. Toutant, J. Iacono, P. Descamps, P. Leempoel, F. Massines, J. Phys. D: Appl. Phys. 48, 415301 (2015) CrossRefGoogle Scholar
  13. 13.
    N. O’Connor, H. Humphreus, S. Daniles, IEEE Trans. Plasma Sci. 42, 756 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    Z. Cao, Q. Nie, D.L. Baylist, J.L. Walsh, C.S. Ren, D.Z. Wang, M.G. Kong, Plasma Sources Sci. Technol. 19, 025003 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    J. Furmanski, J.Y. Kim, S.-O. Kim, IEEE Trans. Plasma Sci. 39, 2338 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    Q.-Q. Fan, M.-Y. Qian, C.-S. Ren, D. Wang, X. Wen, IEEE Trans. Plasma Sci. 40, 1724 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    Z. Cao, J.L. Walsh, M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    M. Ghasemi, P. Olszewski, J.W. Bradley, J.L. Walsh, J. Phys. D: Appl. Phys. 46, 052001 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    D.E. Ashpis, M.C. Laun, E.L. Griebeler, National Aeronautics and Space Administration (Glenn Research Center, Cleveland, Ohio, 2012), Tech. Rep. NASA/TM-2012-217449, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120009957.pdf
  20. 20.
    M. Holub, Int. J. Appl. Electrom. 39, 81 (2012) ADSGoogle Scholar
  21. 21.
    M. Machida, Braz. J. Phys. 45, 132 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    C. Liu, N. Cui, N.M.D. Brown, B.J. Meenan, Surf. Coat. Tech. 185, 311 (2004) CrossRefGoogle Scholar
  23. 23.
    P. Slepička, N.S. Kasálková, E. Stránská, L. Bačáková, V. Švorčík, eXPRESS Polym. Lett. 7, 535 (2013) CrossRefGoogle Scholar
  24. 24.
    M. Chaker, M. Moisan, Z. Zakrzewski, Plasma Chem. Plasma Process. 6, 79 (1986) CrossRefGoogle Scholar
  25. 25.
    A.B. Sá, C.M. Ferreira, S. Pasquiers, C. Boisse-Laporte, P. Leprince, J. Marec, J. Appl. Phys. 70, 4147 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Phys. Rep. 540, 123 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    SpecAir software, http://specair-radiation.net/, accessed on: April 2017
  28. 28.
    N. Masoud, K. Martus, M. Figus, K. Becker, Contrib. Plasma Phys. 45, 30 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Plasma Sources Sci. Technol. 15, 818 (2006) CrossRefGoogle Scholar
  30. 30.
    P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Plasma Sources Sci. Technol. 23, 023001 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    F. Nascimento, M. Machida, M.A. Canesqui, S.A. Moshkalev, IEEE Trans. Plasma Sci. 45, 346 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Fellype do Nascimento
    • 1
  • Munemasa Machida
    • 2
  • Konstantin Kostov
    • 3
  • Stanislav Moshkalev
    • 1
  • Roberto Y. Honda
    • 3
  • Rogério P. Mota
    • 3
  • Thalita M. C. Nishime
    • 3
  • Alonso H. R. Castro
    • 3
  1. 1.Center for Semiconducting Components and Nanotechnologies – State University of CampinasCampinasBrazil
  2. 2.Institute of Physics “Gleb Wataghin” – State University of CampinasCampinasBrazil
  3. 3.Faculty of Engineering – Sao Paulo State UniversityGuaratinguetáBrazil

Personalised recommendations