Skip to main content
Log in

Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Today’s reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ’s efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.C. Yang, J.A. Baker, J. Richard Ward, Chem. Rev. 92, 1729 (1992)

    Article  Google Scholar 

  2. H.W. Herrmann, I. Henins, J. Park, G.S. Selwyn, Phys. Plasmas 6, 2284 (1999)

    Article  ADS  Google Scholar 

  3. T. Hirakawa, N. Mera, T. Sano, N. Negishi, K. Takeuchi, J. Pharm. Soc. Jpn. 129, 71 (2009)

    Article  Google Scholar 

  4. C. Bisio, F. Carniato, C. Palumbo, S.L. Safronyuk, M.F. Starodub, A.M. Katsev, L. Marchese, M. Guidotti, Catal. Today 277, 192 (2016)

    Article  Google Scholar 

  5. A. Fridman, A. Chirokov, A. Gutsol, J. Phys. D: Appl. Phys. 38, R1 (2005)

    Article  ADS  Google Scholar 

  6. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2006)

    Article  ADS  Google Scholar 

  7. N. Puač, M. Miletić, M. Mojović, A. Popović-Bijelić, D. Vuković, B. Miličić, D. Maletić, S. Lazović, G. Malović, Z.Lj. Petrović, Open Chem. 13, 332 (2015)

    Google Scholar 

  8. J.L. Zimmermann, T. Shimizu, H.U. Schmidt, Y.F. Li, G.E. Morfill, G. Isbary, New J. Phys. 14, 073037 (2012)

    Article  ADS  Google Scholar 

  9. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Proc. Polym. 5, 503 (2008)

    Article  Google Scholar 

  10. U. Cvelbar, M. Mozetic, N. Hauptman, M. Klanjsek-Gunde, J. Appl. Phys. 106, 103303 (2009)

    Article  ADS  Google Scholar 

  11. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L.H. Yahia, Int. J. Pharm. 226, 1 (2001)

    Article  Google Scholar 

  12. T. Vukusic, M. Shi, Z. Herceg, S. Rogers, P. Estifaee, S.M. Thagard, Innov. Food Sci. Emerg. Technol. 38, 407 (2016)

    Article  Google Scholar 

  13. M. Magureanu, N.B. Mandache, V.I. Parvulescu, Water Res. 81, 124 (2015)

    Article  Google Scholar 

  14. E.J. Klimova, F. Krcma, L. Jonisova, Eur. Phys. J. Appl. Phys. 75, 24709 (2016)

    Article  ADS  Google Scholar 

  15. S. Krishna, E. Ceriani, E. Marotta, A. Giardina, P. Špatenka, C. Paradisi, Chem. Eng. J. 292, 35 (2016)

    Article  Google Scholar 

  16. J.E. Foster, Phys. Plasmas 24, 055501 (2017)

    Article  ADS  Google Scholar 

  17. Z. Wen-Chao, W. Bai-Rong, X. Hai-Ling, P. Yi-Kang, Plasma Chem. Plasma Process. 30, 381 (2010)

    Article  Google Scholar 

  18. Z. Li, Y. Li, P. Cao, H. Zhao, Plasma Sci. Technol. 15, 696 (2013)

    Article  ADS  Google Scholar 

  19. H.W. Herrmann, G.S. Selwyn, I. Henins, J. Park, M. Jeffery, J.M. Williams, IEEE Trans. Plasma Sci. 30, 1460 (2002)

    Article  ADS  Google Scholar 

  20. P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.Lj. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schroeter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  21. I. Adamovich, S. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.Lj. Petrovic, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, A. Vardelle, J. Phys. D: Appl. Phys. 50, 323001 (2017)

    Article  Google Scholar 

  22. M.M. Hefny, C. Pattyn, P. Lukes, J. Benedikt, J. Phys. D: Appl. Phys. 49, 404002 (2016)

    Article  Google Scholar 

  23. S.L. Bartelt-Hunt, D.R.U. Knappe, M.A. Barlaz, Environ. Sci. Technol. 38, 112 (2008)

    Article  Google Scholar 

  24. R.T. Rewick, M.L. Schumacher, D.L. Haynes, Appl. Spectrosc. 40, 152 (1986)

    Article  ADS  Google Scholar 

  25. E. Nwankire, V.J. Law, A. Nindrayog, B. Twomey, K. Niemi, V. Milosavljević, W.G. Graham, D.P. Dowling, Plasma Chem. Plasma Process. 30, 537 (2010)

    Article  Google Scholar 

  26. J. Benedikt, S. Hofmann, N. Knake, H. Boettner, R. Reuter, A. von Keudell, V. Schulz-von der Gathen, Eur. Phys. J. D 60, 539 (2010)

    Article  ADS  Google Scholar 

  27. Y.S. Seo, A.-A.H. Mohamed, K.C. Woo, H.W. Lee, J.K. Lee, K.T. Kim, IEEE Trans. Plasma Sci. 38, 2954 (2010)

    Article  ADS  Google Scholar 

  28. R. Brandenburg, J. Ehlbeck, M. Stieber, T. von Woedtke, J. Zeymer, O. Schlueter, K.-D. Weltmann, Contrib. Plasma Phys. 47, 72 (2007)

    Article  ADS  Google Scholar 

  29. A.N. Korbut, V.A. Kelman, Yu.V. Zhmenyak, M.S. Klenovskii, Opt. Spectrosc. 116, 919 (2014)

    Article  ADS  Google Scholar 

  30. E. Ilik, T. Akan, Phys. Plasmas 23, 053501 (2016)

    Article  ADS  Google Scholar 

  31. G.V. Naidis, Plasma Sources Sci. Technol. 23, 065014 (2014)

    Article  ADS  Google Scholar 

  32. A.V. Nastuta, V. Pohoata, I. Topala, J. Appl. Phys. 113, 183302 (2013)

    Article  ADS  Google Scholar 

  33. S. Hofmann, K. van Gils, S. van der Linden, S. Iseni, P. Bruggeman, Eur. Phys. J. D 68, 56 (2014)

    Article  ADS  Google Scholar 

  34. X. Damany, S. Pasquiersa, N. Blin-Simiand, G. Bauville, B. Bournonville, M. Fleury, P. Jeanney, J.S. Sousa, Eur. Phys. J. Appl. Phys. 75, 24713 (2016)

    Article  ADS  Google Scholar 

  35. N. Puač, D. Maletić, S. Lazović, G. Malović, A. Đorđević, Z.Lj. Petrović, Appl. Phys. Lett. 101, 024103 (2012)

    Article  ADS  Google Scholar 

  36. D. Maletić, N. Puač, N. Selaković, S. Lazović, G. Malović, A. Đorđević, Z.Lj. Petrović, Plasma Sources Sci. Technol. 24, 025006 (2015)

    Article  ADS  Google Scholar 

  37. E. Robert, V. Sarron, T. Darny, D. Ries, S. Dozias, J. Fontane, L. Joly, J.-M. Pouvesle, Plasma Sources Sci. Technol. 23, 012003 (2014)

    Article  ADS  Google Scholar 

  38. S. Hofmann, K. van Gils, S. van der Linden, S. Iseni, P. Bruggeman, Eur. Phys. J. D 68, 56 (2014)

    Article  ADS  Google Scholar 

  39. A.W. Abu-Qare, M.B. Abou-Donia, J. Pharm. Biomed. Anal. 26, 291 (2001)

    Article  Google Scholar 

  40. B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Chem. Eng. J. 236, 348 (2014)

    Article  Google Scholar 

  41. M. Hijosa-Valsero, R. Molina, A. Montràs, M. Müller, J.M. Bayona, Environ. Technol. Rev. 3, 71 (2014)

    Article  Google Scholar 

  42. P. Kuklenyik, Ph.D. thesis, Georgia State University, 2009

  43. H. Ando, Y. Miyata, in Drugs and poisons in humans, edited by O. Suzuki, K. Watanabe (Springer-Verlag, Berlin, Heidelberg, New York, 2005)

  44. S.C. Cho, H.S. Uhm, Y.C. Hong, Y.G. Park, J.S. Park, J. Appl. Phys. 103, 123303 (2008)

    Article  ADS  Google Scholar 

  45. T.Z. Tzou, S.W. Weller, J. Catal. 146, 370 (1994)

    Article  Google Scholar 

  46. J. Kruszelnicki, A.M. Lietz, M.J. Kushner, in Proceedings of Intern. Conf. on Plasmas with Liquids-ICPL 2017, Prague, edited by P. Lukes, K. Kolacek (IPP CAS, Prague, 2017), p. 37l

  47. W. Tian, A.M. Lietz, M.J. Kushner, Plasma Sources Sci. Technol. 25, 055020 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Škoro.

Additional information

Contribution to the Topical Issue “Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škoro, N., Puač, N., Živković, S. et al. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet. Eur. Phys. J. D 72, 2 (2018). https://doi.org/10.1140/epjd/e2017-80329-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80329-9

Navigation