Calculations of photoelectron momentum distributions and energy spectra at strong-field multiphoton ionization of sodium

  • Andrej Bunjac
  • Duška B. Popović
  • Nenad S. Simonović
Regular Article
  • 12 Downloads
Part of the following topical collections:
  1. Topical Issue: Physics of Ionized Gases (SPIG 2016)

Abstract

Multiphoton ionization of sodium by a femtosecond laser pulse of 760 nm wavelength and different peak intensities is studied by inspecting the photoelectron angular and momentum distributions and the energy spectra. For this purpose a single-electron model of the atom interacting with the electromagnetic field is used, and the distributions are determined by calculating the evolution of the electron wave function. Beside the most prominent distribution maxima related to the four-photon ionization, the five-photon (above-threshold) ionization peaks are observed. Substructures in the main (nonresonant) maximum in the photoelectron spectra at the four-photon ionization are related to the resonantly enhanced multiphoton ionization via intermediate 4s, 4f, 5p, 5f and 6p states.

Graphical abstract

References

  1. 1.
    M.H. Mittleman, Introduction to the Theory of Laser-Atom Interactions (Plenum Press, New York, 1982), p. 121Google Scholar
  2. 2.
    N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms (Springer, Heidelberg, 2000), Vol. 13Google Scholar
  3. 3.
    F. Grossmann, Theoretical Femtosecond Physics (Springer-Verlag, Berlin, 2008)Google Scholar
  4. 4.
    C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, 2012)Google Scholar
  5. 5.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    M. Schuricke, G. Zhu, J. Steinmann, K. Simeonidis, I. Ivanov, A. Kheifets, A.N. Grum-Grzhimailo, K. Bartschat, A. Dorn, J. Ullrich, Phys. Rev. A 83, 023413 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M. Krug, T. Bayer, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, S.S. Ivanov, N.V. Vitanov, New J. Phys. 11, 105051 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Hart, J. Strohaber, A.A. Kolomenskii, G.G. Paulus, D. Bauer, H.A. Schuessler, Phys. Rev. A 93, 063426 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    H. Hellmann, J. Chem. Phys. 3, 61 (1935)ADSCrossRefGoogle Scholar
  11. 11.
    M.Z. Milošević, N.S. Simonović, Phys. Rev. A 91, 023424 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Sansonetti, J. Phys. Chem. Ref. Data 37, 1659 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    N.B. Delone, V.P. Krainov, Physics – Uspekhi 42, 669 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B: At. Mol. Opt. Phys. 43, 202001 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A. Askar, A.S. Cakmak, J. Chem. Phys. 68, 2794 (1978)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Bunjac, D.B. Popović, N.S. Simonović, to be publishedGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Andrej Bunjac
    • 1
  • Duška B. Popović
    • 1
  • Nenad S. Simonović
    • 1
  1. 1.Institute of Physics, University of BelgradeBelgradeSerbia

Personalised recommendations