Skip to main content
Log in

Characterization of pulsed metallic hydride vacuum arc discharge plasmas by optical emission spectroscopy

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330–340 nm and 498–503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Nikolaeva, G.Yu. Yushkova, E.M Oksa, Appl. Surf. Sci. 310, 51 (2014)

    Article  ADS  Google Scholar 

  2. A.G. Nikolaev, E.M. Oksa, K.P. Savkin et al., Rev. Sci. Instrum. 83, 02A501 (2012)

    Article  Google Scholar 

  3. I.G. Brown, IEEE Trans. Plasma Sci. 21, 537 (1993)

    Article  ADS  Google Scholar 

  4. R. Hollinger, M. Galonska, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 239, 227 (2005)

    Article  ADS  Google Scholar 

  5. R.J. Walko, G.E. Rochau, IEEE Trans. Nucl. Sci. 28, 1531 (1981)

    Article  ADS  Google Scholar 

  6. D. Chernikova, V.L. Romodanov, A.G. Belevitin et al., Nucl. Instrum. Methods Phys. Res. A 756, 74 (2014)

    Article  ADS  Google Scholar 

  7. T. Kubono, J. Appl. Phys. 50, 7958 (1979)

    Article  ADS  Google Scholar 

  8. J. Sasaki, K. Sugiyama, X. Yao et al., J. Appl. Phys. 73, 7184 (1993)

    Article  ADS  Google Scholar 

  9. E. Cheifetz, U. Adar, G. Davara, Ions emitted by a pulsed titanium-hydride spark plasma source, in XVII International Symposium on Discharges and Electrical Insulation in Vacuum (1996), Vol. 1, pp. 194–198

  10. L. Chen, D. Jin, L. Cheng et al., Vacuum 86, 813 (2012)

    Article  ADS  Google Scholar 

  11. H. Laqua, H. Bluhm, L. Buth et al., J. Appl. Phys. 77, 5545 (1995)

    Article  ADS  Google Scholar 

  12. D. Andruczyk, R.N. Tarrant, B.W. James et al., Plasma Sources Sci. Technol. 15, 533 (2006)

    Article  ADS  Google Scholar 

  13. M. Takeuchi, T. Kubono, IEEE Trans. Plasma Sci. 28, 991 (2000)

    Article  ADS  Google Scholar 

  14. J. Zalach, S. Franke, J. Appl. Phys. 113, 043303 (2013)

    Article  ADS  Google Scholar 

  15. J.J. Xu, H.Y. Cheung, S.Q. Shi, J. Alloys Compd. 436, 82 (2007)

    Article  Google Scholar 

  16. A.A. Logachev, A.M. Chaly, S.M. Shkol’nik, Tech. Phys. 42, 445 (1997)

    Article  Google Scholar 

  17. W.E. Kenneth, D.G. James, R. Lawrence et al., Rev. Sci. Instrum. 29, 614 (1958)

    Article  Google Scholar 

  18. D.L. Shmelev, S.A. Barengolts, N.N. Shchitov, Tech. Phys. Lett. 40, 783 (2014)

    Article  ADS  Google Scholar 

  19. J. Yang, D.M. Zhao, X. Ma, Phys. Scripta T156, 014076 (2013)

    Article  ADS  Google Scholar 

  20. M. Kuntz, J. Quant. Spectrosc. Radiat. Transf. 57, 819 (1997)

    Article  ADS  Google Scholar 

  21. W. Ruyten, J. Quant. Spectrosc. Radiat. Transf. 86, 231 (2004)

    Article  ADS  Google Scholar 

  22. NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm

  23. H.R. Griem, Spectral line broadening by plasmas (Academic Press, New York, 1974), p. 255

  24. H. Holweger, Sol. Phys. 25, 14 (1972)

    Article  ADS  Google Scholar 

  25. M.S. Dimitrijevic, N. Konjevic, Astron. Astrophys. 172, 345 (1987)

    ADS  Google Scholar 

  26. A. Anders, B. Yotsombat, R. Binder, J. Appl. Phys. 89, 7764 (2001)

    Article  ADS  Google Scholar 

  27. E. Cheifetz, U. Adar, G. Davara, Ions emitted by a pulsed titanium-hydride spark plasma source, in 17th International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley (1996), 0-7803-2906

  28. G.Y. Yushkov, A.G. Nikolaev, V.P. Frolova et al., Tech. Phys. Lett. 40, 1072 (2014)

    Article  ADS  Google Scholar 

  29. J.A. Aguilera, C. Aragon, J. Phys.: Conf. Ser. 59, 210 (2007)

    Google Scholar 

  30. J.A. Aguilera, C. Aragon, Spectrochim. Acta B: At. Spectrosc. 62, 378 (2007)

    Article  ADS  Google Scholar 

  31. J. Hermann, C.B. Leborgne, D. Hong, J. Appl. Phys. 83, 691 (1998)

    Article  ADS  Google Scholar 

  32. C. Colon, A.A. Medina, Spectrochim. Acta B: At. Spectrosc. 61, 856 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Deng, C., Wu, C. et al. Characterization of pulsed metallic hydride vacuum arc discharge plasmas by optical emission spectroscopy. Eur. Phys. J. D 71, 326 (2017). https://doi.org/10.1140/epjd/e2017-80270-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80270-y

Keywords

Navigation