Skip to main content
Log in

Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Moth-Smith, I. Langmuir, Phys. Rev. 28, 727 (1929)

    Article  ADS  Google Scholar 

  2. J.E. Allen, R.T.F. Boyd, P. Reynolds, Proc. Phys. Soc. Lond. B70, 297 (1957)

    Article  ADS  Google Scholar 

  3. I.B. Bernstein, I.N. Rabinowitz, Phys. Fluids 2, 112 (1959)

    Article  ADS  Google Scholar 

  4. Ya.L. Al’pert, A.V. Gurevich, L.P. Pitaevskii, Space physics with artificial satellites (Consultant Bureau, New York, 1965)

  5. E.C. Whipple, Rep. Prog. Phys. 44, 1197 (1981)

    Article  ADS  Google Scholar 

  6. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  7. S.A. Khrapak, A.V. Ivlev, in Complex and dusty plasmas: from laboratory to space, edited by V.E. Fortov, G.E. Morfill (CRC Press, London, New York, 2010), p. 99

  8. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, J. Appl. Phys. 72, 3934 (1992)

    Article  ADS  Google Scholar 

  9. J.E. Allen, Phys. Scripta 45, 497 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.J. Choi, M.J. Kushner, IEEE Trans. Plasma Sci. 22, 138 (1994)

    Article  ADS  Google Scholar 

  11. A.V. Zobnin, A.P. Nefedov, V.A. Sinel’shchikov, V.E. Fortov, JETP 91, 483 (2000)

    Article  ADS  Google Scholar 

  12. I.H. Hutchinson, Plasma Phys. Control. Fusion 44, 1953 (2002)

    Article  ADS  Google Scholar 

  13. G. Lapenta, in Advanced methods for space simulations, edited by H. Usui, Y. Omura (TERRAPUB, Tokyo, 2007) p. 61

  14. F.X. Bronold, H. Feshke, H. Kersten, H. Deutsch, Phys. Rev. Lett. 101, 175002 (2008)

    Article  ADS  Google Scholar 

  15. I.H. Hutchinson, L. Patacchini, Plasma Phys. Control. Fusion 52, 124005 (2010)

    Article  ADS  Google Scholar 

  16. Yu.P. Raizer, Gas discharge physics (Springer-Verlag, Berlin, 1991)

  17. V.L. Krasovsky, Plasma Phys. Rep. 39, 572 (2013)

    Article  Google Scholar 

  18. J. Goree, Phys. Rev. Lett. 69, 277 (1992)

    Article  ADS  Google Scholar 

  19. M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Plasmas 10, 1500 (2003)

    Article  ADS  Google Scholar 

  20. A.A. Kiselyov, M.S. Dolgonosov, V.L. Krasovsky, Europhys. Lett. 111, 15001 (2015)

    Article  ADS  Google Scholar 

  21. V.L. Krasovsky, A.A. Kiselyov, M.S. Dolgonosov, Plasma Phys. Rep. 43, 37 (2017)

    Article  ADS  Google Scholar 

  22. R.L. Morse, C.W. Nielson, Phys. Fluids 12, 2418 (1969)

    Article  ADS  Google Scholar 

  23. R. Morse, in Methods in computational physics, plasma physics, edited by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York, London, 1970), Vol. 9

  24. K. Birdsall, A B. Langdon, Plasma physics via computer simulation (CRC Press, London, New York, 2004)

  25. D.E. Potter, Computational physics (Wiley, London, 1973)

  26. R.W. Hockney, J.W. Eastwood, Computer simulation using particles (CRC Press, London, New York, 1988)

  27. J.P. Verboncoeur, Plasma Phys. Control. Fusion 47, A231 (2005)

    Article  ADS  Google Scholar 

  28. J. Kovačič, T. Gyergyek, M. Čerček, Eur. Phys. J. D 54, 383 (2009)

    Article  ADS  Google Scholar 

  29. S.M.H. Jenab, I. Kourakis, Eur. Phys J. D 68, 219 (2014)

    Article  ADS  Google Scholar 

  30. V.L. Krasovsky, J. Phys. Soc. Jpn. 85, 034501 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kiselyov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasovsky, V.L., Kiselyov, A.A. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles. Eur. Phys. J. D 71, 318 (2017). https://doi.org/10.1140/epjd/e2017-80252-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80252-1

Keywords

Navigation