Joint weak value for all order coupling using continuous variable and qubit probe

  • Asmita Kumari
  • Alok Kumar Pan
  • Prasanta K. Panigrahi
Regular Article
  • 10 Downloads

Abstract

The notion of weak measurement in quantum mechanics has gained a significant and wide interest in realizing apparently counterintuitive quantum effects. In recent times, several theoretical and experimental works have been reported for demonstrating the joint weak value of two observables where the coupling strength is restricted to the second order. In this paper, we extend such a formulation by providing a complete treatment of joint weak measurement scenario for all-order-coupling for the observable satisfying A2 = 𝕀 and A2 = A, which allows us to reveal several hitherto unexplored features. By considering the probe state to be discrete as well as continuous variable, we demonstrate how the joint weak value can be inferred for any given strength of the coupling. A particularly interesting result we pointed out that even if the initial pointer state is uncorrelated, the single pointer displacement can provide the information about the joint weak value, if at least third order of the coupling is taken into account. As an application of our scheme, we provide an all-order-coupling treatment of the well-known Hardy paradox by considering the continuous as well as discrete meter states and show how the negative joint weak probabilities emerge in the quantum paradoxes at the weak coupling limit.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    I.M. Duck, P.M. Stevenson, E.C.G. Sudarshan, Phys. Rev. D 40, 2112 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Aharonov, L. Vaidman, J. Phys. A: Math. Gen. 24, 2315 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    L. Vaidman, Found. Phys. 26, 895 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Aharonov et al., Phys. Lett. A 301, 130 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    K.J. Resch, A.M. Steinberg, Phys. Rev. Lett. 92, 130402 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Lundeenn, K.J. Resch, Phys. Lett. A 334, 337 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    G. Mitchison, R. Jozsa, S. Popescu, Phys. Rev. A 76, 060302 (2007) CrossRefGoogle Scholar
  9. 9.
    J. Tollaksen, J. Phys. A: Math. Theor. 40, 9033 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    A. Di Lorenzo, J. Carlos Egues, Phys. Rev. A 77, 042108 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    R. Jozsa, Phys. Rev. A 76, 044103 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    J. Dressel, A.N. Jordan, Phys. Rev. A 85, 012107 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    N. Brunner, C. Simon, Phys. Rev. Lett. 105, 010405 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    T. Geszti, Phys. Rev. A 81, 044102 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    X. Zhu et al., Phys. Rev. A 84, 052111 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    T. Koike, S. Tanaka, Phys. Rev. A 84, 062106 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    A.D. Parks, J.E. Gray, Phys. Rev. A 84, 012116 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    K. Nakamura, A. Nishizawa, M.K. Fujimoto, Phys. Rev. A 85, 012113 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    J. Dressel, A.N. Jordan, Phys. Rev. A 85, 012107 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Susa, Y. Shikano, A. Hosoya, Phys. Rev. A 85, 052110 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    A. Di Lorenzo, Phys. Rev. A 85, 032106 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Kedem, Phys. Rev. A 85, 060102(R) (2012) ADSCrossRefGoogle Scholar
  23. 23.
    S. Wu, Y. Li, Phys. Rev. A 83, 052106 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    K. Nakamura, A. Nishizawa, M.K. Fujimoto, Phys. Rev. A 85, 012113 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    A.K. Pan, A. Matzkin, Phys. Rev. A 85, 022122 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Pan, A. Matzkin, Laser Phys. 22, 1153 (2012) Google Scholar
  27. 27.
    A. Nishizawa, K. Nakamura, M. Fujimoto, Phys. Rev. A 85, 062108 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    G. Puentes, N. Hermosa, J.P. Torres, Phys. Rev. Lett. 109, 040401 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    H. Kobayashi, G. Puentes, Y. Shikano, Phys. Rev. A 86, 053805 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    B.D.L. Bernardo, S. Azevedo, A. Rosas, Ann. Phys. 356, 336 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    S. Kanjilal, G. Muralidhara, D. Home, Phys. Rev. A 94, 0052110 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    L. Vaidman, Phys. Rev. A 87, 052104 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    A. Matzkin, A.K. Pan, J. Phys. A: Math. Theor. 46, 315307 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    L. Vaidman, Phys. Rev. A 89, 024102 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    V. Potocek, G. Ferenczi, Phys. Rev. A 92, 023829 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    R.B. Griffiths, Phys. Rev. A 94, 032115 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    Q. Duprey, A. Matzkin, arXiv:1611.02780
  38. 38.
    N.W.M. Ritchie, J.G. Story, R.G. Hulet, Phys. Rev. Lett. 66, 1107 (1991) ADSCrossRefGoogle Scholar
  39. 39.
    G.L. Pryde et al., Phys. Rev. Lett. 94, 220405 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    Q. Wang et al., Phys. Rev. A 73, 023814 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    O. Hosten, P. Kwiat, Science 319, 787 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    J.S. Lundeen, A.M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    K. Yokota, T. Yamamoto, M. Koashi, N. Imoto, New J. Phys. 11, 033011 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    D.J. Starling, P.B. Dixon, A.N. Jordan, J.C. Howell, Phys. Rev. A 80, 041803(R) (2009) ADSCrossRefGoogle Scholar
  45. 45.
    D.J. Starling et al., Phys. Rev. A 82, 011802(R) (2010) ADSCrossRefGoogle Scholar
  46. 46.
    S. Kocsis et al., Science 332, 117 (2011) CrossRefGoogle Scholar
  47. 47.
    J.S. Lundeen et al., Nature 474, 188 (2011) CrossRefGoogle Scholar
  48. 48.
    O. Zilberberg, A. Romito, Y. Gefen, Phys. Rev. Lett. 106, 080405 (2011) ADSCrossRefGoogle Scholar
  49. 49.
    A. Danan, D. Farfurnik, S. Bar-Ad, L. Vaidman, Phys. Rev. Lett. 111, 240402 (2013) ADSCrossRefGoogle Scholar
  50. 50.
    Y.S. Kim, J.C. Lee, O. Kwon, Y.H. Kim, Nat. Phys. 8, 117 (2012) CrossRefGoogle Scholar
  51. 51.
    F. Piacentini et al., Phys. Rev. Lett. 117, 170402 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    S. Wu, M. Zukowski, Phys. Rev. Lett. 108, 080403 (2012) ADSCrossRefGoogle Scholar
  53. 53.
    A.K. Pan, P.K. Panigrahi, Phys. Rev. Lett. 111, 028901 (2013) ADSCrossRefGoogle Scholar
  54. 54.
    X. Zhu, Q. Wei, Q. Liu, S. Wu, Phys. Lett. A 377, 2505 (2013) ADSCrossRefGoogle Scholar
  55. 55.
    L. Hardy, Phys. Rev. Lett. 68, 2981 (1992) ADSCrossRefGoogle Scholar
  56. 56.
    Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995) ADSCrossRefGoogle Scholar
  57. 57.
    Y. Kedem, L. Vaidman, Phys. Rev. Lett. 105, 230401 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Asmita Kumari
    • 1
  • Alok Kumar Pan
    • 1
  • Prasanta K. Panigrahi
    • 2
  1. 1.National Institute Technology PatnaPatnaIndia
  2. 2.Indian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations