Skip to main content
Log in

Experimental and theoretical study on chemical reactions and species diffusion by a nano-pulse discharged bubble for water treatment

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Advanced oxidation processes using hydroxyl radicals (⋅OH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Miao, Y. Tang, C.W. Wong, H. Zang, Environ. Pollut. 196, 473 (2015)

    Article  Google Scholar 

  2. M. Greenstone, R. Hanna, Am. Econ. Rev. 104, 103038 (2014)

    Article  Google Scholar 

  3. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Appl. Catal. B: Environ. 46, 639 (2003)

    Article  Google Scholar 

  4. V. Camel, A. Bermond, Water Res. 32, 113208 (1998)

    Article  Google Scholar 

  5. R. Broséus, S. Vincent, K. Aboulfadl, A. Daneshvar, S. Sauvé, B. Barbeau, M. Prévost, Water Res. 43, 184707 (2009)

    Article  Google Scholar 

  6. M. Antonopoulou, E. Evgenidou, D. Lambropoulou, I. Konstantinou, Water Res. 53, 215 (2014)

    Article  Google Scholar 

  7. P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)

    Article  ADS  Google Scholar 

  8. B.R. Locke, K.Y. Shih, Plasma Sources Sci. Technol. 20, 034006 (2011)

    Article  ADS  Google Scholar 

  9. M. Magureanu, D. Piroi, N.B. Mandache, V. David, A. Medvedovici, C. Bradu, V.I. Parvulescu, Water Res. 45, 113407 (2011)

    Article  Google Scholar 

  10. B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Chem. Eng. J. 236, 348 (2014)

    Article  Google Scholar 

  11. H. Nishiyama, R. Nagai, K. Niinuma, H. Takana, J. Fluid Sci. Technol. 8, 65 (2013)

    Article  Google Scholar 

  12. Y. He, S. Uehara, H. Takana, H. Nishiyama, Plasma Sci. Technol. 18, 924 (2016)

    Article  ADS  Google Scholar 

  13. Y. Matsui, N. Takeuchi, K. Sasaki, R. Hayashi, K. Yasuoka, Plasma Sources Sci. Technol. 20, 034015 (2011)

    Article  ADS  Google Scholar 

  14. W. Tian, K. Tachibana, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 055202 (2013)

    Article  ADS  Google Scholar 

  15. H. Nishiyama, K. Niinuma, S. Shinoki, H. Takana, Plasma Chem. Plasma Process. 35, 339 (2015)

    Article  Google Scholar 

  16. N.Y. Babaeva, M.J. Kushner, J. Phys. D: Appl. Phys. 42, 132003 (2009)

    Article  ADS  Google Scholar 

  17. X. Lu, J. Appl. Phys. 102, 063302 (2007)

    Article  ADS  Google Scholar 

  18. Y. Sakiyama, D.B. Graves, H.W. Chang, T. Shimizu, G.E. Morfill, J. Phys. D: Appl. Phys. 45, 425201 (2012)

    Article  ADS  Google Scholar 

  19. N. Takeuchi, M. Ando, K. Yasuoka, Jpn. J. Appl. Phys. 54, 116201 (2015)

    Article  ADS  Google Scholar 

  20. E.L. Cussler, Diffusion: mass transfer in fluid systems, 3rd edn. (Cambridge University Press, Cambridge, 2009), Chap. 5, pp. 117–160

  21. N. Takeuchi, Electron. Commun. Jpn. 98, 55 (2015)

    Article  Google Scholar 

  22. S.N. Pandis, J.H. Seinfeld, J. Geophys. Res. 94, 1105 (1989)

    Article  ADS  Google Scholar 

  23. P.J. Bruggeman, Plasma Sources Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  24. W. Tian, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014)

    Article  ADS  Google Scholar 

  25. R. Sander, At. Chem. Phys. 15, 4399 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. E.N. Fuller, P.D. Schettler, J.C. Giddings, Ind. Eng. Chem. 58, 18 (1966)

    Article  Google Scholar 

  27. M.J. Tang, R.A. Cox, M. Kalberer, At. Chem. Phys. 14, 179233 (2014)

    ADS  Google Scholar 

  28. Z. Machala, J. Mol. Spectrosc. 243, 194 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Uehara, S., Takana, H. et al. Experimental and theoretical study on chemical reactions and species diffusion by a nano-pulse discharged bubble for water treatment. Eur. Phys. J. D 72, 11 (2018). https://doi.org/10.1140/epjd/e2017-80240-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80240-5

Keywords

Navigation