Effects of the location of a biased limiter on turbulent transport in the IR-T1 tokamak plasma

Regular Article
  • 26 Downloads

Abstract

Plasma confinement plays an important role in fusion study. Applying an external voltage using limiter biasing system is proved to be an efficient approach for plasma confinement. In this study, the position of the limiter biasing system was changed to investigate the effect of applying external voltages at different places to the plasma. The external voltages of ±200 V were applied at the different positions of edge, 5 mm and 10 mm inside the plasma. Then, the main plasma parameters were measured. The results show that the poloidal turbulent transport and radial electric field increased about 25–35% and 35–45%, respectively (specially when the limiter biasing system was placed 5 mm inside the plasma). Also, the Reynolds stress is experienced its maximum reduction about 5–10% when the limiter biasing system was at 5 mm inside the plasma and the voltage of +200 V was applied to the plasma. When the limiter biasing system move 10 mm inside the plasma, the main plasma parameters experienced more instabilities and fluctuations than other positions.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP, Bristol, 2000)Google Scholar
  2. 2.
    P. Khorshid, L. Wang, M. Ghoranneviss, F.M. Aghamir, X. Yang, C. Feng, J. Fus. Res. 6, 638 (2004)Google Scholar
  3. 3.
    N. Bisai, A. Das, S. Deshpande, R. Jha, P. Kaw, A. Sen, R. Singh, Phys. Plas. 12, 072520 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Myra, D.A. D’Ippolito, X.Q. Xu, R.H. Cohen, Phys. Plas. 7, 4622 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Boedo, J.R. Myra, S. Zweben, R. Maingi, R.J. Maqueda, V.A. Soukhanovskii, J.W. Ahn, J. Canik, N. Crocker, D.A. D’Ippolito, R. Bell, Phys. Plas. 21, 04230 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Salar Elahi, M. Ghoranneviss, J. Fus. Res. 28, 416 (2009)Google Scholar
  7. 7.
    A. Salar Elahi, M. Ghoranneviss, M.R. Ghanbari, J. Fus. Energy 32, 580 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Meshkani, M. Ghoranneviss, M. Lafouti, A. Salar Elahi, Phys. Scr. 88, 035502 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Callen, C.C. Hegna, A.J. Cole, Phys. Plas. 17, 056113 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G.V. Oost, J. Adámek, V. Antoni, P. Balan, J.A. Boedo, P. Devynck, I. Ïuran, L. Eliseev, J.P. Gunn, M. Hron, C. Ionita, S. Jachmich, G.S. Kirnev, E. Martines, A. Melnikov, R. Schrittwieser, C. Silva, J. Stöckel, M. Tendler, C. Varandas, M.V. Schoor, V. Vershkov, R.R. Weynants, Plas. Phys. Control. Fus. 45, 621 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    P. Devynck, J. Brotankova, P. Peleman, M. Spolaore, H. Figueiredo, M. Hron, G. Kirnev, E. Martines, J. Stockel, G. Van Oost, V. Weinzettl, Phys. Plas. 13, 102505 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M. Spolaore, E. Martines, J. Brotankova, J. Stockel, J. Adamek, E. Dufkova, I. Duran, M. Hron, V. Weinzettl, P. Peleman, G. Van Oost, P. Devynck, H. Figueiredo, G. Kirnev, Czechoslov. J. Phys. 55, 1597 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Salar Elahi, M. Ghoranneviss, Plas. Sci. 38, 181 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Alipour, S. Meshkani, A. Salar Elahi, M. Ghoranneviss, Eur. Phys. J. D 71, 60 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research Branch, Islamic Azad UniversityTehranIran

Personalised recommendations