Skip to main content
Log in

Theoretical studies on the effect of benzene and thiophene groups on the charge transport properties of Isoindigo and its derivatives

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, the charge transport properties of Isoindigo (II) and its derivatives which have the same hexyl chain were theoretically investigated by the Marcus-Hush theory combined with density functional theory (DFT). Here we demonstrate that the changes of benzene and thiophene groups in molecular structure have an important influence on the charge transport properties of organic semiconductor. The benzene rings of II are replaced by thiophenes to form the thienoisoindigo (TII), and the addition of benzene rings to the TII form the benzothienoisoindigo (BTII). The results show that benzene rings and thiophenes change the chemical structure of crystal molecules, which lead to different molecule stacking, thus, the length of hydrogen bond was changed. A shorter intermolecular hydrogen bond lead to tighter molecular stacking, which reduces the center-to-center distance and enhances the ability of charge transfer. At the same time, we theoretically demonstrated that II and BTII are the ambipolar organic semiconductor. BTII has better carrier mobility. The hole mobility far greater than electron mobility in TII, which is p-type organic semiconductor. Among all hopping path, we find that the distance of face-to-face stacking in II is the shortest and the electron-transport electronic coupling V e is the largest, but II has not a largest anisotropic mobility, because the reorganization energy has a greater influence on the mobility than the electronic coupling. This work is helpful for designing ambipolar organic semiconductor materials with higher charge transport properties by introducing benzene ring and thiophene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chi, D. Li, H. Zhang, Y. Chen, V. Garcia, C. Garcia, T. Siegrist, Org. Electron. 9, 234 (2008)

    Article  Google Scholar 

  2. G.H. Gelinck, T.C.T. Geuns, D.M. De Leeuw, Appl. Phys. Lett. 77, 1487 (2000)

    Article  ADS  Google Scholar 

  3. M. Muccini, Nat. Mater. 5, 605 (2006)

    Article  ADS  Google Scholar 

  4. S. Nagamatsu, K. Kaneto, R. Azumi, M. Matsumoto, Y. Yoshida, K. Yase, J. Phys. Chem. B 109, 9374 (2005)

    Article  Google Scholar 

  5. N. Padma, S.N. Sawant, S. Sen, Mater. Sci. Semicond. Proc. 30, 18 (2015)

    Article  Google Scholar 

  6. G. Barbarella, M. Melucci, G. Sotgiu, Adv. Mater. 17, 1581 (2005)

    Article  Google Scholar 

  7. A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109, 897 (2009)

    Article  Google Scholar 

  8. Y. Shirota, H. Kageya, Chem. Rev. 107, 953 (2007)

    Article  Google Scholar 

  9. Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem. Rev. 109, 5868 (2009)

    Article  Google Scholar 

  10. S. Günes, H. Neugebauer, N.S. Sariciftci, Cheminform 38, 1324 (2007)

    Google Scholar 

  11. G. Ren, P.T. Wu, S.A. Jenekhe, Chem. Mater. 22, 2020 (2010)

    Article  Google Scholar 

  12. S. Fabiano, H. Usta, R. Forchheimer, X. Crispin, A. Facchetti, M. Berggren, Adv. Mater. 26, 7438 (2015)

    Article  Google Scholar 

  13. T.D. Anthopoulos, G.C. Anyfantis, G.C. Papavassiliou, D.M.D. Leeuw, Appl. Phys. Lett. 90, 678 (2007)

    Article  Google Scholar 

  14. E.D. Głowacki, M. Irimiavladu, M. Kaltenbrunner, J. Gsiorowski, M.S. White, U. Monkowius, G. Romanazzi, G.P. Suranna, P. Mastrorilli, T. Sekitani, Adv. Mater. 25, 1563 (2013)

    Article  Google Scholar 

  15. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Adv. Funct. Mater. 20, 4017 (2010)

    Article  Google Scholar 

  16. E.D. Głowacki, D.H. Apaydin, Z. Bozkurt, U. Monkowius, K. Demirak, E. Tordin, M. Himmelsbach, C. Schwarzinger, M. Burian, R.T. Lechner, J. Mater. Chem. C 2, 8089 (2014)

    Article  Google Scholar 

  17. T. Hasegawa, M. Ashizawa, H. Matsumoto, RSC Adv. 5, 61035 (2015)

    Article  Google Scholar 

  18. L. Liu, G. Yang, Y. Duan, Y. Geng, Y. Wu, Z. Su, Org. Electron. 15, 1896 (2014)

    Article  Google Scholar 

  19. A.J. Alexander, R.N. Zare, Acc. Chem. Res. 33, 199 (2000)

    Article  Google Scholar 

  20. Y.D. Wu, W. Han, D.P. Wang, Y. Gao, Y.L. Zhao, Acc. Chem. Res. 41, 1418 (2008)

    Article  Google Scholar 

  21. G.J. Zhao, K.L. Han, J. Phys. Chem. A 113, 14329 (2009)

    Article  Google Scholar 

  22. G.J. Zhao, J.Y. Liu, A. Lichuan Zhou, K.L. Han, J. Phys. Chem. B 111, 8940 (2007)

    Article  Google Scholar 

  23. H.L. Wei, Y.R. Shi, Y.F. Liu, Semicond. Sci. Technol. 31, 065016 (2016)

    Article  ADS  Google Scholar 

  24. R. Marcus, J. Chem. Phys. 26, 872 (1963)

    Article  ADS  Google Scholar 

  25. N.S. Hush, J. Chem. Phys. 28, 962 (1958)

    Article  ADS  Google Scholar 

  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009)

  27. J.J. Kwiatkowski, J. Nelson, H. Li, J.L. Bredas, W. Wenzel, C. Lennartz, Phys. Chem. Chem. Phys. 10, 1852 (2008)

    Article  Google Scholar 

  28. T. Yamada, T. Sato, K. Tanaka, H. Kaji, Org. Electron. 11, 255 (2010)

    Article  Google Scholar 

  29. G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127, 2339 (2005)

    Article  Google Scholar 

  30. V. Coropceanu, T. Nakano, N.E. Gruhn, O. Kwon, T. Yade, K. Katsukawa, J.L. Brédas, J. Phys. Chem. B 110, 9482 (2006)

    Article  Google Scholar 

  31. J.L. Bredas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

    Article  Google Scholar 

  32. G. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. Van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001)

    Article  Google Scholar 

  33. K. Senthilkumar, F.C. Grozema, F.M. Bickelhaupt, L.D.A. Siebbeles, J. Chem. Phys. 119, 9809 (2003)

    Article  ADS  Google Scholar 

  34. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004)

    Article  ADS  Google Scholar 

  35. S.H. Wen, A. Li, J. Song, W.Q. Deng, K.L. Han, W.A.G. Iii, J. Phys. Chem. B 113, 8813 (2009)

    Article  Google Scholar 

  36. K. Ming-Yu, H.Y. Chen, I. Chao, Chemistry 13, 4750 (2007)

    Article  Google Scholar 

  37. S. Mohakud, A.P. Alex, S.K. Pati, J. Phys. Chem. C 114, 20436 (2010)

    Article  Google Scholar 

  38. A. Chandekar, J.E. Whitten, Synth. Met. 150, 259 (2005)

    Article  Google Scholar 

  39. X.Q. Ran, J.K. Feng, Y.L. Liu, A.M. Ren, L.Y. Zou, C.C. Sun, J. Phys. Chem. A 112, 10904 (2008)

    Article  Google Scholar 

  40. X.Y. Zhang, G.J. Zhao, J. Phys. Chem. C 116, 13858 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, XB., Wei, HL., Shi, YT. et al. Theoretical studies on the effect of benzene and thiophene groups on the charge transport properties of Isoindigo and its derivatives. Eur. Phys. J. D 71, 314 (2017). https://doi.org/10.1140/epjd/e2017-80211-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80211-x

Keywords

Navigation