Superfluid critical velocity of spin-orbit coupled Bose-Einstein condensates

Regular Article

Abstract

We find that for a point-like impurity moving in an isotropic Rashba or Weyl spin-orbit coupled Bose-Einstein condensate with a plane-wave order, the superfluid critical velocity is zero if its direction is not perpendicular to a special one along which the dispersion relation of excitations is quadratic. The superfluid critical velocity can only be finite in the perpendicular directions. The dimensionality of superfluidity is lower than that of the physical system. The spin-orbit coupling plays a key role in this phenomenon, which macroscopically enhances the degeneracy of the ground state of free gas, and resulting in softer Goldstone modes when bosons condense. The anisotropy of the superfluid critical velocity is an effect of breaking the rotational symmetry of the system due to a finite canonical condensed momentum. In the Weyl SOC case, spin-dependence of particle-particle interactions also leads to anisotropic dynamics, in which the spin-orbit coupling plays a crucial role.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    S.N. Bose, Z. Phys. 26, 178 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, Sitzungsber. Kgl. Preuss, Akad. Wiss. 1924, 261 (1924)Google Scholar
  3. 3.
    A. Einstein, Sitzungsber. Kgl. Preuss, Akad. Wiss. 1925, 3 (1925)Google Scholar
  4. 4.
    F. London, Nature (London) 141, 643 (1938)ADSCrossRefGoogle Scholar
  5. 5.
    P. Sokol, 1995, in Bose Einstein Condensation, edited by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge), p. 51Google Scholar
  6. 6.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A. Oosawa, M. Ishii, H. Tanaka, J. Phys.: Condens. Matter 11, 265 (1999)ADSGoogle Scholar
  17. 17.
    T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    V. Zapf, M. Jaime, C.D. Batista, Rev. Mod. Phys. 86, 563 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    E.M. Lifshitz, L.P. Pitaevskii, Landau and Lifshitz Course of Theoretical Physics: Statistical Physics (Butterworth-Heinemann, Oxford, 1980), Pt. 2Google Scholar
  20. 20.
    R.P. Feynman, in Progress in Low Temperature Physics, edited by C.J. Gorter (North Holland, Amsterdam, 1955), Vol. 1, Chap. II, pp. 17–53Google Scholar
  21. 21.
    G.E. Astrakharchik, L.P. Pitaevskii, Phys. Rev. A 70, 013608 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J.Y. Zhang, S.C. Ji, Z. Chen, L. Zhang, Z.D. Du, B. Yan, G.S. Pan, B. Zhao, Y.J. Deng, H. Zhai, S. Chen, J.W. Pan, Phys. Rev. Lett. 109, 115301 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    P. Wang, Z.Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    L. Huang, Z. Meng, P. Wang et al., Nat. Phys. 12, 540 (2016)CrossRefGoogle Scholar
  27. 27.
    Z. Wu, L. Zhang, W. Sun, X.R. Xu, B.Z. Wang, S.C. Ji, Y. Deng, S. Chen, X.J. Liu, J.W. Pan, arXiv:1511.08170
  28. 28.
    H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    X. Zhou, Y. Li, Z. Cai, C. Wu, J. Phys. B: A. Mol. Opt. Phys. 46, 134001 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    N. Goldman, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    H. Zhai, Rep. Prog. Phys. 78, 026001 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Q. Zhu, C. Zhang, B. Wu, Eur. Phys. Lett. 100, 50003 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    P.S. He, Y.H. Zhu, W.M. Liu, Phys. Rev. A 89, 053615 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    P.S. He, R. Liao, W.M. Liu, Phys. Rev. A 86, 043632 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960)Google Scholar
  36. 36.
    E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)Google Scholar
  37. 37.
    C. Wang, C. Gao, C.M. Jian, H. Zhai, Phys. Rev. Lett. 105, 160403 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    C.J. Wu, I. Mondragon-Shem, X.F. Zhou, Chin. Phys. Lett. 28, 097102 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    B.M. Anderson, G. Juzeliūnas, V.M. Galitski, I.B. Spielman, Phys. Rev. Lett. 108, 235301 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    R. Barnett, G.R. Boyd, V. Galitski, Phys. Rev. Lett. 109, 235308 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, Berlin, 1999)Google Scholar
  42. 42.
    R. Barnett, S. Powell, T. Gra, M. Lewenstein, S. Das Sarma, Phys. Rev. A 85, 023615 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    R. Liao, O. Fialko, J. Brand, U. Zülicke, Phys. Rev. A 92, 043633 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    P.S. He, W.L. You, W.M. Liu, Phys. Rev. A 87, 063603 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    T. Ozawa, G. Baym, Phys. Rev. Lett. 109, 025301 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    H. Shi, A. Griffin, Phys. Rep. 304, 1 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Science, Beijing Technology and Business UniversityBeijingP.R. China

Personalised recommendations