Low energy cross sections for electron scattering from tetrafluoroallene

  • Dhanoj Gupta
  • Heechol Choi
  • Mi-Young Song
  • Kalyan Chakrabarti
  • Jung-Sik Yoon
Regular Article
  • 29 Downloads

Abstract

We report elastic, total, excitation, differential and momentum-transfer cross sections for scattering of low-energy electrons by tetrafluoroallene (C3F4) using the close-coupling (CC) approximation in the R-matrix method with Quantemol-N. We have tested various target models initially to check for the convergence of the result and the final results are provided with the best target model. We have detected shape resonances of symmetry 2E(2B1,2B2) at 3.08 eV and 3.71 eV with a close-coupling and static exchange models which is seen as a sharp feature in the elastic and momentum transfer cross sections. We also detected other resonances of symmetry 2E at 11.26 eV and of symmetry 2A2 at 11.12 eV below the ionization threshold of the target respectively. The present elastic and total cross sections are compared with the elastic and total cross sections of allene (C3H4), propene (C3H6) and hexafluoropropene (C3F6) as there were no results available for C3F4. The effect of fluorination is clearly seen with the shape resonance for C3F4 getting slightly shifted to higher energies compared to allene. Finally, we also report the ionization cross section calculated using the Binary-Encounter Bethe (BEB) method. The present calculation is a maiden attempt to find cross sections for C3F4 molecule which could be useful for fluorocarbon plasma modeling.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    L.G. Christophorou, J.K. Olthoff, Adv. At. Mol. Opt. Phys. 44, 59 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    C. Szmytkowski, P. Możejko, G. Kasperski, E. Ptasińska-Denga, J. Phys. B: At. Mol. Opt. Phys. 33, 15 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    K. Bartschat, M.J. Kushner, PNAS 113, 7026 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    K. Wang, J. Meng, K.L. Baluja, Eur. Phys. J. D 69, 78 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    M.M. Fujimoto, E.V.R. de Lima, J. Tennyson, Eur. Phys. J. D 69, 153 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    X. Huang, K. Wang, J. Meng, S. Guo, G. Xu, Eur. Phys. J. D 71, 20 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    D. Gupta, H. Choi, J.-S. Yoon, B. Antony, M.-Y. Song, J. Phys. B: At. Mol. Opt. Phys. 50, 085202 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M.H.F. Bettega, C. Winstead, V. McKoy, Phys. Rev. A 82, 062709 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Nakano, M. Hoshino, M. Kitajima, H. Tanaka, Phys. Rev. A 66, 032714 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C. Szmytkowski, S. Kwitnewski, J. Phys. B: At. Mol. Opt. Phys. 35, 3781 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C. Makochekanwa, H. Kawate, O. Sueoka, M. Kimura, M. Kitajima, M. Hoshino, H. Tanaka, Chem. Phys. Lett. 368, 82 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    A.R. Lopes, M.H.F. Bettega, Phys. Rev. A 67, 032711 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    S.d’A. Sanchez, A.R. Lopes, M.H.F. Bettega, M.A.P. Lima, L.G. Ferreira, Phys. Rev. A 71, 062702 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A. Barot, D. Gupta, M. Vinodkumar, B. Antony, Phys. Rev. A 87, 062701 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C. Szmytkowski, S. Kwitnewski, E. Ptasińska-Denga, Phys. Rev. A 68, 032715 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    C. Szmytkowski, S. Kwitnewski, J. Phys. B: At. Mol. Opt. Phys. 36, 2129 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    G. Kasperski, P. Możejko, C. Szmytkowski, Z. Phys. D 42, 187 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    C. Szmytkowski, S. Kwitnewski, P. Możejko, E. Ptasińska-Denga, Phys. Rev. A 66, 014701 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    C. Szmytkowski, S. Kwitnewski, J. Phys. B: At. Mol. Opt. Phys. 35, 2613 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    C. Makochekanwa, H. Kato, M. Hoshino, H. Cho, M. Kimura, O. Sueoka, H. Tanaka, Eur. Phys. J. D 35, 249 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A. Dora, J. Tennyson, K. Chakrabarti, Eur. Phys. J. D 70, 197 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    The Editors, Phys. Rev. A 83, 040001 (2011)Google Scholar
  23. 23.
    H.-K. Chung, B.J. Braams, K. Bartschat, A.G. Császár, G.W.F. Drake, T. Kirchner, V. Kokoouline, J. Tennyson, J. Phys. D: Appl. Phys. 49, 363002 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Tennyson, Phys. Rep. 491, 29 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    J. Tennyson, D.B. Brown, J. Munro, I. Rozum, H.N. Varambhia, N. Vinci, J. Phys.: Conf. Ser. 86, 012001 (2007)Google Scholar
  26. 26.
    P.G. Burke, K.A. Berrington, Atomic, Molecular Processes – An R-matrix Approach (Institute of Physics Publishing, Bristol, 1993)Google Scholar
  27. 27.
    A.M. Arthurs, A. Dalgarno, Proc. Phys. Soc. Lond. Sect. A 256, 540 (1960)ADSCrossRefGoogle Scholar
  28. 28.
    A. Faure, J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, Comput. Phys. Commun. 144, 224 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    M. Gailitis, J. Phys. B 9, 843 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    C.J. Noble, R.K. Nesbet, Comput. Phys. Commun. 33, 399 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936)ADSCrossRefGoogle Scholar
  32. 32.
    J. Tennyson, C.J. Noble, Comput. Phys. Commun. 33, 421 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    W. Hwang, Y.-K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    N.F. Mott, Proc. R. Soc. Lond. Ser. A 126, 259 (1930)ADSCrossRefGoogle Scholar
  37. 37.
    H.A. Bethe, Ann. Phys. 5, 325 (1930)CrossRefGoogle Scholar
  38. 38.
    M.J. Frisch et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2013)Google Scholar
  39. 39.
    W.J. Brigg, J. Tennyson, M. Plummer, J. Phys. B: At. Mol. Opt. Phys. 47, 185203 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    R.K. Thomas, H. Thompson, Proc. R. Soc. Lond. A 339, 29 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    R. Panajotovic, M. Jelisavcic, R. Kajita, T. Tanaka, M. Kitajima, H. Cho, H. Tanaka, S.J. Buckman, J. Chem. Phys. 121, 4559 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    R. Panajotovic, M. Kitajima, T. Tanaka, M. Jelisavcic, J. Lower, L. Campbell, M.J. Brunger, S.J. Buckman, J. Phys. B: At. Mol. Opt. Phys. 36, 1615 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    P.D. Burrow, K.D. Jordan, Chem. Phys. Lett. 36, 594 (1975)ADSCrossRefGoogle Scholar
  44. 44.
    N.S. Chiu, P.D. Burrow, K. Jordan, Chem. Phys. Lett. 68, 121 (1979)ADSCrossRefGoogle Scholar
  45. 45.
    A. Jablonski, C.J. Powell, Surf. Sci. 463, 29 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    J.M. Fernández-Varea, D. Liljequist, S. Csillag, R. Räty, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 108, 35 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    D.W. Berman, D.S. Bomes, J.L. Beauchamp, Int. J. Mass Spectrom. Ion Phys. 39, 263 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    J. Benedikt, J. Phys. D: Appl. Phys. 43, 043001 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dhanoj Gupta
    • 1
  • Heechol Choi
    • 1
  • Mi-Young Song
    • 1
  • Kalyan Chakrabarti
    • 2
  • Jung-Sik Yoon
    • 1
  1. 1.Plasma Technology Research Center, National Fusion Research InstituteJeollabuk-doSouth Korea
  2. 2.Department of MathematicsKolkataIndia

Personalised recommendations