Low energy electron-impact study of AlO using the R-matrix method

Regular Article
  • 19 Downloads

Abstract

This comprehensive study reports the electron-impact on the open shell AlO molecule at low energy (less than 10 eV) using the R-matrix method. We present the elastic (integrated and differential), momentum-transfer, electronic excitation and ionisation cross sections; along with effective collision frequency over a wide electron temperature range (1000–100 000 K). Correlations via a configuration interaction technique are used to represent the target states. Calculations are performed in the static-exchange and 24-target states close-coupling approximation at the experimental bond length of 1.6178 Å. We have used different basis sets 6-311G*, double zeta, polarization (DZP), cc-pCVTZ to represent our target states. We have chosen the Gaussian Type Orbitals (GTOs) basis set DZP to represent the atomic orbitals which gave the best one-electron properties of the molecule. The calculated dipole moment (1.713 au), rotational constant (0.641399 cm-1) and the vertical excitation energies are in concurrence with the best available data. The continuum electron is also represented by GTOs and is placed at the center of mass of the molecule. Resonance analysis is carried out to assign the resonance parameters and the parentage of detected resonances by fitting the eigenphase sums to the Breit–Wigner profile. Our study has detected three core-excited shape resonances in the 24-state model. We detect a stable bound state of AlO- of 1 A 1 symmetry having configuration 1σ 2 … 7σ 21π 42π 4 with a vertical electronic affinity value of 2.59 eV which is in good accord with the experimental value of 2.6 ± (0.01) eV. The ionisation cross sections are calculated using the Binary-Encounter-Bethe Model in which Hartree–Fock molecular orbitals at self-consistent level are used to calculate kinetic and binding energies of the occupied molecular orbitals. We include partial waves up to g-wave beyond which Born closure method is employed to obtain converged cross sections.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    D.C. Tyte, Nature 202, 383 (1964) ADSCrossRefGoogle Scholar
  2. 2.
    D.C. Tyte, Proc. Phys. Soc. 92, 1134 (1967) ADSCrossRefGoogle Scholar
  3. 3.
    E.R. Johnson, C.H. Low, Aust. J. Phys. 19, 577 (1967) ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Merrill, A.J. Deutsch, P.C. Keenan, Astrophys. J. 136, 21 (1962) ADSCrossRefGoogle Scholar
  5. 5.
    N.R. Tawde, V.M. Korwar, Karnatak University, Dharwar, dli.ernet.in (1962)
  6. 6.
    M.M. Chaudhari, C.T. Londhe, S.H. Behere, Pramana-J. Phys. 66, 597 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    M. Singh, G.V. Zope, S.L.N.G. Krishnamachari, J. Phys. B: At. Mol. Opt. Phys. 18, 1743 (1985) ADSCrossRefGoogle Scholar
  8. 8.
    O. Launila, J. Jonsson, J. Mol. Spectrosc. 168, 1 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    O. Launila, D.P.K. Banerjee, Astron. Astrophys. 508, 1067 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    E.D. Tenenbaum, L.M. Ziurys, Astrophys. J. 694, L59 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Desai, H. Wu, L.S. Wang, Int. J. Mass Spectrom. Ion Process. 159, 75 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    J. Schamps, Chem. Phys. 2, 352 (1973) ADSCrossRefGoogle Scholar
  13. 13.
    G. Das, T. Janis, A.C. Wahl, J. Chem. Phys. 61, 1274 (1974) ADSCrossRefGoogle Scholar
  14. 14.
    P.S. Murty, Chem. Phys. 29, 391 (1978) ADSCrossRefGoogle Scholar
  15. 15.
    N.R. Brinkmann, G.S. Tschumper, H.F. Schaefer, J. Chem. Phys. 110, 6240 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    C. Zenouda, P. Blottiau, G. Chambaud, P. Rosmus, J. Mol. Struct. (Theochem.) 458, 61 (1999) CrossRefGoogle Scholar
  17. 17.
    A. Marquez, M.J. Capitan, J.A. Odriozola, J.F. Sanz, Int. J. Quantum Chem. 52, 1329 (1994) CrossRefGoogle Scholar
  18. 18.
    G.L. Gutsev, P. Jena, R.J. Bartlett, J. Chem. Phys. 110, 2928 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    O. Launila, L.-E. Berg, J. Mol. Spectrosc. 265, 10 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    H. Liu, D. Shi, J. Shun, Z. Zhu, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 101, 400 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    A.T. Patrascu, C. Hill, J. Tennyson, S.N Yurchenko, J. Chem. Phys. 141, 144312 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    A.T. Patrascu, S.N. Yurchenko, J. Tennyson, Mon. Not. R. Astron. Soc. 449, 3613 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    P.G. Burke, R-matrix theory of atomic collisions: application to atomic, molecular and optical processes (Springer, Heidelberg, Dordrecht, London, New York, 2011) Google Scholar
  24. 24.
    C.J. Gillan, J. Tennyson, P.G. Burke, in Computational methods for electron–molecule collisions, edited by C.J. Huo, F.A. Gianturco (Plenum, New York, 1995) Google Scholar
  25. 25.
    K.L. Baluja, P.G. Burke, L.A. Morgan, Comput. Phys. Commun. 27, 299 (1982) ADSCrossRefGoogle Scholar
  26. 26.
    L.A. Morgan, Comput. Phys. Commun. 31, 419 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    L.A. Morgan, C.J. Gillan, J. Tennyson, X. Chen, J. Phys. B: At. Mol. Opt. Phys. 30, 4087 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    J.M. Carr, P.G. Gabatsatos, J.D. Gorfinkel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Masin, M. Plummer, J. Tennyson, Eur. J. Phys. D. 66, 58 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    B.M. Nestmann, K. Pfingst, S.D. Peyerimhoff, J. Phys. B: At. Mol. Opt. Phys. 27, 2297 (1994) ADSCrossRefGoogle Scholar
  30. 30.
    J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 29, 6185 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    A. Faure, J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, Comput. Phys. Commun. 144, 224 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932) CrossRefGoogle Scholar
  33. 33.
    Computational Chemistry Comparison and Benchmark database, cccbdb.nist.gov/
  34. 34.
    S. Kaur, K.L. Baluja, J. Tennyson, Phys. Rev. A 77, 032718 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    S. Kaur, K.L. Baluja, Phys. Rev. A 80, 042701 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    J. Tennyson, C.J. Noble, Comput. Phys. Commun. 33, 421 (1984) ADSCrossRefGoogle Scholar
  37. 37.
    Y.K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    W. Hwang, Y.K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 1996 ADSCrossRefGoogle Scholar
  39. 39.
    F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986) ADSCrossRefGoogle Scholar
  40. 40.
    N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    P. Baille, J.S. Chang, A. Claude, R.M. Hobson, G.L. Ogram, A.W. Yau, J. Phys. B: At. Mol. Phys. 14, 1485 (1981) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Savinder Kaur
    • 1
  • Kasturi L. Baluja
    • 2
  • Monika Bassi
    • 3
  1. 1.SGTB Khalsa College, Department of Physics, University of DelhiDelhiIndia
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  3. 3.Kalindi College, Department of Physics, University of DelhiDelhiIndia

Personalised recommendations