Asymptotic behavior of photoionization cross section in a central field

Regular Article
  • 7 Downloads

Abstract

We demonstrate that the high energy nonrelativistic asymptotics for the photoionization cross section in a central field V(r) can be obtained without solving of the wave equations for the bound and outgoing electrons. The asymptotics is expressed in terms of the asymptotics of the Fourier transform V(p) of the field. We show that the cross sections drop in the same way for the fields with the Coulomb short distance behavior. The character of the cross sections energy behavior is related to the analytical properties of the function V(r). The cross sections exhibit power drop for the potentials which have singularities on the real axis. They experience the exponential drop if V(r) has singularities in the complex plane.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    R. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, NY, 1982)Google Scholar
  2. 2.
    E.G. Drukarev, A.I. Mikhailov, High-Energy Atomic Physics (Springer International Publishing AG, Switzerland, 2016)Google Scholar
  3. 3.
    T. Aberg, Phys. Rev. A 2, 1726 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    E.G. Drukarev, N.B. Avdonina, J. Phys. B 36, 2033 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Dover Publications, NY, 2008)Google Scholar
  6. 6.
    M.Ya. Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Blinder, Chem. Phys. Lett. 64, 485 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    A.I. Baz, Ya.B. Zel’dovich, A.M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translation, Jerusalem, 1969)Google Scholar
  9. 9.
    T. Ericson, W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988)Google Scholar
  10. 10.
    J.M. Ugalde, C. Sarasola, X. Lopez, Phys. Rev. A 56, 1642 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    B.W. Ninham, M. Boström, C. Persson, I. Brevik, S.Y. Buhmann, B.E. Sernelius, Eur. Phys. J. D 68, 328 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    T. Tietz, Z. Naturforsch. 23a, 191 (1968)ADSGoogle Scholar
  13. 13.
    T. Kato, Commun. Pure Appl. Math. 10, 151 (1957)CrossRefGoogle Scholar
  14. 14.
    A.B. Migdal, Qualitative Methods in Quantum Physics (Perseus Books, Reading, MA, USA, 2000)Google Scholar
  15. 15.
    S. Flügge, Practical Quantum Mechanics-I (Springer-Verlag, Berlin-Heidelberg-NY, 1971)Google Scholar
  16. 16.
    W. Mück, G. Pozzo, JHEP 05, 128 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    D. Cevik, M. Gadella, S. Kuru, J. Negro, Phys. Lett. A 380, 1600 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York-Toronto-London, 1954), Vol. 1Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute”, B.P. Konstantinov Petersburg Nuclear Physics InstituteSt. PetersburgRussia

Personalised recommendations