Skip to main content
Log in

A Monte-Carlo method which is not based on Markov chain algorithm, used to study electrostatic screening of ion potential

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A new simple Monte Carlo method is introduced for the study of electrostatic screening by surrounding ions. The proposed method is not based on the generally used Markov chain method for sample generation. Each sample is pristine and there is no correlation with other samples. As the main novelty, the pairs of ions are gradually added to a sample provided that the energy of each ion is within the boundaries determined by the temperature and the size of ions. The proposed method provides reliable results, as demonstrated by the screening of ion in plasma and in water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  2. L.M. Varela, M. Garcia, V. Mosquera, Phys. Rep. 382, 1 (2003)

    Article  ADS  Google Scholar 

  3. H. Boroudjerdi, Y.W. Kim, A. Naji, R.R. Netz, X. Schlagberger, A. Serr, Phys. Rep. 416, 129 (2005)

    Article  ADS  Google Scholar 

  4. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, Nature 414, 286 (2001)

    Article  ADS  Google Scholar 

  5. B. Hribar, V. Vlachy, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. B 104, 11522 (2000)

    Article  Google Scholar 

  6. R. Fantoni, G. Pastore, Phys. Rev. E 87, 052303 (2013)

    Article  ADS  Google Scholar 

  7. K.-L. Yang, S. Yiacoumi, C. Tsouris, J. Chem. Phys. 117, 8499 (2002)

    Article  ADS  Google Scholar 

  8. B. Forsberg, J. Ulander, R. Kjellander, J. Chem. Phys. 122, 064502 (2005)

    Article  ADS  Google Scholar 

  9. P. Debye, E. Hückel, Physik. Z. 24, 185 (1923)

    Google Scholar 

  10. A.Y. Potekhin, G. Chabrier, D. Gilles, Phys. Rev. E 65, 036412 (2002)

    Article  ADS  Google Scholar 

  11. J.-M. Caillol, D. Gilles, J. Phys. A: Math. Gen. 43, 105501 (2010)

    Article  ADS  Google Scholar 

  12. S. Ogata, Phys. Rev. E 53, 1094 (1996)

    Article  ADS  Google Scholar 

  13. M.A. Osman, D.K. Ferry, Phys. Rev. B 36, 6018 (1987)

    Article  ADS  Google Scholar 

  14. T.T. Nguyen, B.I. Shklovskii, Phys. Rev. E 66, 021801 (2002)

    Article  ADS  Google Scholar 

  15. A.Z. Panagiotopoulos, J. Phys.: Condens. Matter 12, R25 (2000)

    ADS  Google Scholar 

  16. C.E. Reed, W.F. Reed, J. Chem. Phys. 96, 1609 (1992)

    Article  ADS  Google Scholar 

  17. D.W. Sinkovits, S.A. Barr, E. Luijten, J. Chem. Phys. 136, 144111 (2012)

    Article  ADS  Google Scholar 

  18. T.S. Sorensen, J. Chem. Soc. Faraday Trans. 86, 1815 (1990)

    Article  Google Scholar 

  19. M. Ullner, B. Jönsson, C. Peterson, O. Sommelius, B. Söderberg, J. Chem. Phys. 107, 1279 (1997)

    Article  ADS  Google Scholar 

  20. Z.Y. Wang, Y.Q. Ma, J. Chem. Phys. 133, 064704 (2010)

    Article  ADS  Google Scholar 

  21. Z.Y. Wang, Y.Q. Ma, J. Chem. Phys. 131, 244715 (2009)

    Article  ADS  Google Scholar 

  22. K. Wünsch, P. Hilse, M. Schlanges, D.O. Gericke, Phys. Rev. E 77, 056404 (2008)

    Article  ADS  Google Scholar 

  23. X. Zhu, M.S. Hybertsen, P.B. Littlewood, Phys. Rev. B 54, 13575 (1996)

    Article  ADS  Google Scholar 

  24. A.A. Barker, Aust. J. Phys. 18, 119 (1965)

    Article  ADS  Google Scholar 

  25. J.J. Molina, J.F. Dufreche, M. Salanne, O. Bernard, M. Jardat, P. Turq, J. Chem. Phys. 135, 234509 (2011)

    Article  ADS  Google Scholar 

  26. V.S. Filinov, V.E. Fortov, M. Bonitz, D. Kremp, Phys. Lett. A 274, 228 (2000)

    Article  ADS  Google Scholar 

  27. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  28. S. Medina, J. Zhou, Z.G. Wang, F. Schmid, J. Chem. Phys. 142, 024103 (2015)

    Article  ADS  Google Scholar 

  29. H.B. Nersisyan, C. Toepffer, G. Zwicknagel, Phys. Rev. E 72, 036403 (2005)

    Article  ADS  Google Scholar 

  30. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  Google Scholar 

  31. A.G. Percus, O.C. Martin, Phys. Rev. Lett. 76, 1188 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Šantić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šantić, B., Gracin, D. A Monte-Carlo method which is not based on Markov chain algorithm, used to study electrostatic screening of ion potential. Eur. Phys. J. D 71, 324 (2017). https://doi.org/10.1140/epjd/e2017-80181-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80181-y

Keywords

Navigation