Width of the confinement-induced resonance in a quasi-one-dimensional trap with transverse anisotropy

Regular Article
  • 19 Downloads

Abstract

We theoretically study the width of the s-wave confinement-induced resonance (CIR) in quasi-one-dimensional atomic gases under tunable transversely anisotropic confinement. We find that the width of the CIR can be tuned by varying the transverse anisotropy. The change in the width of the CIR can manifest itself in the position of the discontinuity in the interaction energy density, which can be probed experimentally.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    E. Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsollner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Phys. Rev. Lett. 104, 153203 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, M. Köhl, Phys. Rev. Lett. 106, 105301 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    V. Makhalov, K. Martiyanov, A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe, S. Jochim, Phys. Rev. Lett. 114, 230401 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    T. Bergeman, M.G. Moore, M. Olshanii, Rev. Lett. 91, 163201 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    P. Naidon, E. Tiesinga, W.F. Mitchell, P.S. Julienne, New J. Phys. 9, 19 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    S.-G. Peng, S.S. Bohloul, X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 82, 063633 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    W. Zhang, P. Zhang, Phys. Rev. A 83, 053615 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    X. Cui, Phys. Rev. A 86, 012705 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    B.E. Granger, D. Blume, Phys. Rev. Lett. 92, 133202 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    P. Giannakeas, F.K. Diakonos, P. Schmelcher, Phys. Rev. A 86, 042703 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    B. Heß, P. Giannakeas, P. Schmelcher, Phys. Rev. A 89, 052716 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    B. Heß, P. Giannakeas, P. Schmelcher, Phys. Rev. A 92, 022706 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    G. Wang, P. Giannakeas, P. Schmelcher, J. Phys. B: At. Mol. Opt. Phys. 49, 165302 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    S. Shadmehri, S. Saeidian, V.S. Melezhik, Phys. Rev. A 93, 063616 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    P. Giannakeas, V.S. Melezhik, P. Schmelcher, Phys. Rev. Lett. 111, 183201 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    T. Shi, S. Yi, Phys. Rev. A 90, 042710 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    L. Guan, X. Cui, R. Qi, H. Zhai, Phys. Rev. A 89, 023604 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    A.D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, C. Chin, Phys. Rev. A 79, 013622 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    S. Saeidian, V.S. Melezhik, P. Schmelcher, Phys. Rev. A 86, 062713 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    S. Saeidian, V.S. Melezhik, P. Schmelcher, J. Phys. B 48, 155301 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    S. Saeidian, V.S. Melezhik, P. Schmelcher, Phys. Rev. A 77, 042721 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    V.S. Melezhik, P. Schmelcher, Phys. Rev. A 84, 042712 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    P. Giannakeas, V.S. Melezhik, P. Schmelcher, Phys. Rev. A 84, 023618 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    P. Giannakeas, V.S. Melezhik, P. Schmelcher, Phys. Rev. A 85, 042703 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    S.-G. Peng, H. Hu, X.-J. Liu, P.D. Drummond, Phys. Rev. A 84, 043619 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    R. Qi, X. Guan, Europhys. Lett. 101, 40002 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    S.J.J.M.F. Kokkelmans, J.N. Milstein, M.L. Chiofalo, R. Walser, M.J. Holland, Phys. Rev. A 65, 053617 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    V.A. Yurovsky, Phys. Rev. A 71, 012709 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    J. Levinsen, M.M. Parish, in Annual review of cold atoms and molecules (2015), Vol. 3, Chap. 1, pp. 1–75 Google Scholar
  34. 34.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B. 41, 327 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    C. Chin, V. Vuletić, A.J. Kerman, S. Chu, E. Tiesinga, P.J. Leo, C.J. Williams, Phys. Rev. A 70, 032701 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, C. Chin, Phys. Rev. A 79, 013622 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    R.K. Pathria, Statistical mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996) Google Scholar
  41. 41.
    X.-J. Liu, Phys. Rep. 524, 37 (2013) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    F. Qin, X. Cui, W. Yi, Phys. Rev. A 94, 063616 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    S.-G. Peng, X.-J. Liu, H. Hu, S.-Q. Li, Phys. Lett. A 375, 2979 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    S.-G. Peng, S.-Q. Li, P.D. Drummond, X.-J. Liu, Phys. Rev. A 83, 063618 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    T.-L. Ho, E.J. Mueller, Phys. Rev. Lett. 92, 160404 (2004) ADSCrossRefGoogle Scholar
  46. 46.
    T.-L. Ho, N. Zahariev, arXiv:0408469v1 [condmat.quant-gas]
  47. 47.
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429, 277 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 5687 (2004) CrossRefGoogle Scholar
  49. 49.
    J.R. Taylor, Scattering theory (Wiley, New York, 1972) Google Scholar
  50. 50.
    T.-L. Ho, X. Cui, W. Li, Phys. Rev. Lett. 108, 250401 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    S.-G. Peng, S.-H. Zhao, K. Jiang, Phys. Rev. A 89, 013603 (2014) ADSCrossRefGoogle Scholar
  52. 52.
    T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhães, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Fang Qin
    • 1
    • 2
  • Jian-Song Pan
    • 1
    • 2
    • 3
  • Su Wang
    • 1
    • 2
  • Guang-Can Guo
    • 1
    • 2
  1. 1.Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of SciencesHefeiP.R. China
  2. 2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of ChinaHefeiP.R. China
  3. 3.Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations