Controlling vibrational population distribution of the Na2 molecule by ultrashort pulses in the three-state system

  • Jian Yang
  • Shuo Wang
  • Wei-Shen Zhan
  • Da Jing
  • You-De Zhang
Regular Article
  • 26 Downloads

Abstract

The population transfer and vibrational population distribution of the target state in the three-state Na2 molecule are theoretically investigated by using the time-dependent wave packet method. The population can be efficiently transferred to the target state by the process of adiabatic passage by light induced potentials (APLIP). The vibrational population distribution of the target state can be controlled by adjusting the laser parameters, such as the pulse width, time delay, intensity and envelope. The calculations show the vibrational population distribution variations under different laser parameters where the preparation of the specific state for molecules can be rationalised. In addition, the influence of the ionization state on the population transfer is studied.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) CrossRefGoogle Scholar
  2. 2.
    S.A. Rice, M. Zhao, Optical control of molecular dynamics (Wiley, New York, 2000) Google Scholar
  3. 3.
    N.E. Henriksen, Chem. Soc. Rev. 31, 37 (2002) CrossRefGoogle Scholar
  4. 4.
    Q.T. Meng, G.H. Yang, K.L. Han, Int. J. Quantum Chem. 95, 30 (2003) CrossRefGoogle Scholar
  5. 5.
    J. Wu, H. Zeng, C. Guo, Phys. Rev. A 75, 043402 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    X.H. Yang, Z.H. Zhang, Z. Wang, X.N. Yan, Eur. Phys. J. D 57, 253 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    G.G. Grigoryan, C. Leroy, Y. Pashayan-Leroy, L. Chakhmakhchyan, S. Guerin, H.R. Jauslin, Eur. Phys. J. D 66, 1 (2012) CrossRefGoogle Scholar
  9. 9.
    T. Rickes, L.P. Yatsenko, S. Steuerwald, T. Halfmann, B.W. Shore, N.V. Vitanov, K. Bergmann, J. Chem. Phys. 113, 534 (2000). ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Rangelov, N.V. Vitanov, L.P. Yatsenko, B.W. Shore, T. Halfmann, K. Bergmann, Phys. Rev. A 72, 053403 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    V.S. Malinovsky, J.L. Krause, Eur. Phys. J. D 14, 147 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    B.M. Garraway, K.A. Suominen, Phys. Rev. Lett. 80, 932 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    J. González-Vázquez, I.R. Sola, J. Santamaría, J. Phys. Chem. A 110, 1586 (2006) CrossRefGoogle Scholar
  14. 14.
    B.M. Garraway, K.A. Suominen, Fortschr. Phys. 51, 128 (2003) CrossRefGoogle Scholar
  15. 15.
    K.J. Yuan, Z.G. Sun, S.L. Cong, S.M. Wang, J. Yu, N.Q. Lou, Chem. Phys. 316, 245 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Zai, W.S. Zhan, S. Wang, H.P. Dang, X. Han, Laser Phys. 26, 096002 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    E. Heesel, B.M. Garraway, J.P. Marangos, J. Chem. Phys. 124, 024320 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    B. Zhang, J.H. Wu, X.Z. Yan, L. Wang, X.J. Zhang, J.Y. Gao, Opt. Express 19, 12000 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    K.A. Suominen, J. Mod. Opt. 61, 851 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    C.C. Shu, J. Yu, K.J. Yuan, W.H. Hu, J. Yang, S.L. Cong, Phys. Rev. A 79, 023418 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    B. Wang, Y. Pang, Y.C. Han, S.L. Cong, J. Theor. Comput. Chem. 13, 1450061 (2014) CrossRefGoogle Scholar
  22. 22.
    G.M. Grigorian, I.V. Kochetov, Quantum Electron. 38, 940 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    T. Witte, J.S. Yeston, M. Motzkus, E.J. Heilweil, K.L. Kompa, Chem. Phys. Lett. 392, 156 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    C.P. Lawrence, J.L. Skinner, J. Chem. Phys. 117, 8847 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    W. Jun, L. Fang, D.G. Yue, J. Zhao, Y. Xu, Q.T. Meng, W.K. Liu, Chin. Phys. B 19, 123301 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    A.J. McCaffery, M. Pritchard, J.F. Turner, R.J. Marsh, J. Chem. Phys. 134, 044317 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    K. Kim, A.M. Johnson, A.L. Powell, D.G. Mitchell, E.T. Sevy, J. Chem. Phys. 141, 234306 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    V. Kozich, W. Werncke, J. Dreyer, K.W. Brzezinka, M. Rini, A. Kummrow, T. Elsaesser, J. Chem. Phys. 117, 719 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    M. Rodriguez, K.A. Suominen, B.M. Garraway, Phys. Rev. A 62, 053413 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    B.Y. Chang, I.R. Sola, J. Santamaría, V.S. Malinovsky, J.L. Krause, J. Chem. Phys. 114, 8820 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    K.J. Yuan, S.M. Wang, Z. Sun, S.L. Cong, N. Lou, Chem. Phys. 326, 605 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    T.M. Yan, Y.C. Han, K.J. Yuan, S.L. Cong, Chem. Phys. 348, 39 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    R. Bhattacharya, S. Chatterjee, S.S. Bhattacharyya, Phys. Rev. A 80, 063423 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    J. Wang, F. Liu, D.G. Yue, J. Zhao, Y. Xu, Q.T. Meng, W.K. Liu, Chin. Phys. B 19, 12 (2010) Google Scholar
  35. 35.
    D.D. Konowalow, M.E. Rosenkrantz, D.S. Hochhauser, J. Mol. Spectrosc. 99, 321 (1983) ADSCrossRefGoogle Scholar
  36. 36.
    Q. Meng, X. Liu, Q. Zhang, K. Han, Chem. Phys. 316, 93 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    S. Schiemann, A. Kuhn, S. Steuerwald, K. Bergmann, Phys. Rev. Lett. 71, 3637 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    C.C. Marston, G.G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Z. Sun, N. Lou, Phys. Rev. Lett. 91, 023002 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jian Yang
    • 1
  • Shuo Wang
    • 1
  • Wei-Shen Zhan
    • 1
  • Da Jing
    • 1
  • You-De Zhang
    • 1
  1. 1.School of Mathematical and Physical Sciences, Dalian University of TechnologyPanjinP.R. China

Personalised recommendations