Skip to main content

Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

Abstract

Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Akhmediev, in General Theory of Solitons, in Soliton-driven Photonics, edited by A.D. Boardman, A.P. Sukhorukov (Kluwer Academic Publishers, Netherlands, 2001), pp. 371–395

  2. 2.

    P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996)

    ADS  Article  Google Scholar 

  3. 3.

    W.J. Firth, A. Lord, A.J. Scroggie, Phys. Scr. T 12, 67 (1996)

    Google Scholar 

  4. 4.

    W.J. Firth, G.K. Harkness, A. Lord, J. McSloy, D. Gomila, P. Colet, J. Opt. Soc. Am. B 19, 747 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    V.K. Vanag, I.R. Epstein, Chaos 17, 037110 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen, Opt. Express 21, 9180 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    D. Michaelis, U. Peschel, C. Etrich, F. Lederer, IEEE J. Quantum Electron. 39, 255 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    D. Gomila, M.A. Matias, P. Colet, Phys. Rev. Lett. 94, 063905 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    M. Cross, P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    ADS  Article  Google Scholar 

  10. 10.

    J. Murray, Mathematical Biology (Springer, New York, 1989)

  11. 11.

    R. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge University Press, 2006)

  12. 12.

    B.A. Malomed, Phys. Rev. A 44, 6954 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    B.A. Malomed, Phys. Rev. E 47, 2874 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    D. Cai, A.R. Bishop, N. Gronbech-Jensen, B.A. Malomed, Phys. Rev. E 49, 1677 (1994)

    ADS  Article  Google Scholar 

  15. 15.

    A.V. Buryak, N.N. Akhmediev, Phys. Rev. E 51, 3572 (1995)

    ADS  Article  Google Scholar 

  16. 16.

    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    I.V. Barashenkov, Yu.S. Smirnov, N.V. Alexeeva, Phys. Rev. E 57, 2 (1998)

    Article  Google Scholar 

  18. 18.

    B. Schäpers, M. Feldmann, T. Ackemann, W. Lange, Phys. Rev. Lett. 85, 748 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)

    ADS  Article  Google Scholar 

  20. 20.

    M. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)

    ADS  Article  Google Scholar 

  21. 21.

    F. Leo, S. Coen, P. Kockeart, S.-P. Gorza, Ph. Emplit, M. Haelterman, Nat. Photon. 4, 471 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    S. Coen, H.G. Randle, T. Sylvestre, M. Erkintalo, Opt. Lett. 38, 37 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    Y.K. Chembo, C. Menyuk, Phys. Rev. A 87, 053852 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    P. Del’Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Okawachi, K. Saha, J.S. Levy, Y. Henry Wen, M. Lipson, A.L. Gaeta, Opt. Lett. 36, 3398 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    T. Hansch, Rev. Mod. Phys. 78, 1297 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    S.B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K.J. Vahala, S.A. Diddams, Optica 1, 10 (2014)

    Article  Google Scholar 

  29. 29.

    J.D. Jost, T. Herr, C. Lecaplain, V. Brasch, M.H.P. Pfeiffer, T.J. Kippenberg, Optica 2, 706 (2015)

    Article  Google Scholar 

  30. 30.

    F.M. Mitschke, L.F. Mollenauer, Opt. Lett. 12, 355 (1987)

    ADS  Article  Google Scholar 

  31. 31.

    D.J. Kaup, Phys. Rev. A 42, 5689 (1990)

    ADS  Article  Google Scholar 

  32. 32.

    M. Tlidi, P. Mandel, R. Lefever, Phys. Rev. Lett. 73, 640 (1994)

    ADS  Article  Google Scholar 

  33. 33.

    M. Tlidi, A.G. Vladimirov, P. Mandel, J. Quantum Electron. 39, 2 (2003)

    Article  Google Scholar 

  34. 34.

    B.A. Malomed, Phys. Rev. E 58, 7928 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    J.M. Soto-Crespo, Ph. Grelu, N. Akhmediev, N. Devine, Phys. Rev. E 75, 016613 (2007)

    ADS  Article  Google Scholar 

  36. 36.

    Y. Wang, F. Leo, J. Fatome, K. Luo, J.K. Jang, M.J. Erkintalo, S.G. Murdoch, S. Coen, CLEO:QELS Fundamental Science, FF2A. 6 (2016)

  37. 37.

    Y. Wang, F. Leo, J. Fatome, K. Luo, J.K. Jang, M.J. Erkintalo, S.G. Murdoch, S. Coen (submitted), https://arxiv.org/abs/1703.10604

  38. 38.

    V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M.H.P. Pfeiffer, M.L. Gorodetsky, T.J. Kippenberg, Science 351, 357 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    X. Yi, Q.-F. Yang, K.Y. Yang, K. Vahala, Opt. Lett. 41, 2037 (2016)

    ADS  Article  Google Scholar 

  40. 40.

    P. Del’Haye, A. Coillet, W. Loh, K. Beha, S.B. Papp, S.A. Diddams, Nat. Commun. 6, 5668 (2015)

    Article  Google Scholar 

  41. 41.

    P. Coullet, C. Riera, C. Tresser, Phys. Rev. Lett. 84, 3069 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    P.D. Woods, A.R. Champneys, Physica D 129, 147 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    D. Gomila, A.J. Scroggie, W.J. Firth, Physica D 227, 70 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    J. Burke, E. Knobloch, Phys. Rev. E 73, 056211 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    P. Parra-Rivas, D. Gomila, M.A. Matías, S. Coen, L. Gelens, Phys. Rev. A 89, 043813 (2014)

    ADS  Article  Google Scholar 

  46. 46.

    C. Elphick, E. Meron, E.A. Spiegel, SIAM J. Appl. Math. 50, 490 (1990)

    MathSciNet  Article  Google Scholar 

  47. 47.

    I. Aranson, K. Gorshkov, A. Lomov, M. Rabinovich, Physica D 43, 435 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    G. Kozyreff, P. Assemat, S.J. Chapman, Phys. Rev. Lett. 103, 164501 (2009)

    ADS  Article  Google Scholar 

  49. 49.

    G. Kozyreff, L. Gelens, Phys. Rev. A 84, 023819 (2011)

    ADS  Article  Google Scholar 

  50. 50.

    L. Gelens, D. Gomila, G. Van der Sande, M.A. Matas, P. Colet, Phys. Rev. Lett. 104, 154101 (2010)

    ADS  Article  Google Scholar 

  51. 51.

    P. Colet, M.A. Matías, L. Gelens, D. Gomila, Phys. Rev. E 89, 012914 (2014)

    ADS  Article  Google Scholar 

  52. 52.

    L. Gelens, M.A. Matías, D. Gomila, T. Dorissen, P. Colet, Phys. Rev. E 89, 012915 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    W.J. Firth, A. Lord, J. Mod. Opt. 43, 1071 (1996)

    ADS  Article  Google Scholar 

  54. 54.

    A.R. Champneys, Physica D 112, 158 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

  56. 56.

    R.L. Devaney, Trans. Am. Math. Soc. 218, 89 (1976)

    Article  Google Scholar 

  57. 57.

    A.J. Homburg, B. Sandstede, in Handbook of Dynamical Systems, edited by B. Hasselblatt, H. Broer, F. Takens (North Holland, Amsterdam, The Netherlands, 2010), Chap. 8, pp. 379–524

  58. 58.

    E. Knobloch, Annu. Rev. Cond. Matter Phys. 6, 325 (2015)

    ADS  Article  Google Scholar 

  59. 59.

    J. Burke, E. Knobloch, Discrete Cont. Dyn. Syst. Suppl., September, 109 (2009)

  60. 60.

    M.R.E. Lamont, Y. Okawachi, A.L. Gaeta, Opt. Lett. 38, 3478 (2013)

    ADS  Article  Google Scholar 

  61. 61.

    L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, J. Danckaert, Phys. Rev. A 75, 063812 (2007)

    ADS  Article  Google Scholar 

  62. 62.

    M. Tlidi, L. Gelens, Opt. Lett. 35, 306 (2010)

    ADS  Article  Google Scholar 

  63. 63.

    C. Milián, D.V. Skryabin, Opt. Express 22, 3732 (2014)

    ADS  Article  Google Scholar 

  64. 64.

    P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, L. Gelens, Opt. Lett. 39, 2971 (2014)

    ADS  Article  Google Scholar 

  65. 65.

    C. Milián, A.V. Gorbach, M. Taki, A.V. Yulin, D.V. Skryabin, Phys. Rev. A 92, 033851 (2015)

    ADS  Article  Google Scholar 

  66. 66.

    B.A. Malomed, Europhys. Lett. 30, 507 (1995)

    ADS  Article  Google Scholar 

  67. 67.

    M.O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

    ADS  Article  Google Scholar 

  68. 68.

    F. Gustave, C. Rimoldi, P. Walczak, L. Columbo, M. Brambilla, F. Prati, G. Tissoni, S. Barland, Eur. Phys. J. D (in press)

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pedro Parra-Rivas or Lendert Gelens.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Lugiato-Lefever Equation”, edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parra-Rivas, P., Gomila, D., Colet, P. et al. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation. Eur. Phys. J. D 71, 198 (2017). https://doi.org/10.1140/epjd/e2017-80127-5

Download citation