Skip to main content
Log in

Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The alpha-particle energy deposition mechanism modifies the ignition conditions of the thermonuclear Deuterium-Tritium fusion reactions, and constitutes a key issue in achieving high gain in Inertial Confinement Fusion implosions. One-dimensional hydrodynamic calculations have been performed with the code Multi-IFE [R. Ramis, J. Meyer-ter-Vehn, Comput. Phys. Commun. 203, 226 (2016)] to simulate the implosion of a capsule directly irradiated by a laser beam. The diffusion approximation for the alpha energy deposition has been used to optimize three laser profiles corresponding to different implosion velocities. A Monte-Carlo package has been included in Multi-IFE to calculate the alpha energy transport, and in this case the energy deposition uses both the LP [C.K. Li, R.D. Petrasso, Phys. Rev. Lett. 70, 3059 (1993)] and the BPS [L.S. Brown, D.L. Preston, R.L. Singleton Jr., Phys. Rep. 410, 237 (2005)] stopping power models. Homothetic transformations that maintain a constant implosion velocity have been used to map out the transition region between marginally-igniting and high-gain configurations. The results provided by the two models have been compared and it is found that – close to the ignition threshold – in order to produce the same fusion energy, the calculations performed with the BPS model require about 10% more invested energy with respect to the LP model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive (Springer, New York, 1998)

  2. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Press, Oxford, 2004)

  3. R. Ramis, J. Meyer-ter-Vehn, Comput. Phys. Commun. 203, 226 (2016)

    Article  ADS  Google Scholar 

  4. C.K. Li, R.D. Petrasso, Phys. Rev. Lett. 70, 3059 (1993)

    Article  ADS  Google Scholar 

  5. L.S. Brown, D.L. Preston, R.L. Singleton Jr., Phys. Rep. 410, 237 (2005)

    Article  ADS  Google Scholar 

  6. R.L. Singleton Jr., Phys. Plasmas 15, 056302 (2008)

    Article  ADS  Google Scholar 

  7. B. Canaud, F. Garaude, Nucl. Fusion 45, L43 (2005)

    Article  ADS  Google Scholar 

  8. R. More, K.H. Warren, D.A. Young, G. Zimmermann, Phys. Fluids 31, 3059 (1988)

    Article  ADS  Google Scholar 

  9. A. Kemp, J. Meyer-ter-Vehn, Nucl. Instrum. Meth. A 415, 674 (1998)

    Article  ADS  Google Scholar 

  10. G.B. Zimmermann, Lawrence Livermore National Lab. UCRL-74811 (1973)

  11. G.B. Zimmermann, W.L. Kruer, Comments Plasma Phys. Contr. Fusion 2, 51 (1975)

    Google Scholar 

  12. S. Atzeni, A. Caruso, Il Nuovo Cimento 64, 383 (1981)

    Article  Google Scholar 

  13. S. Atzeni, Plasma. Phys. Contr. Fusion. 29, 1535 (1987)

    Article  ADS  Google Scholar 

  14. V. Brandon, B. Canaud, M. Temporal, R. Ramis, Nuclear Fusion 54, 083016 (2014)

    Article  ADS  Google Scholar 

  15. M. Temporal, V. Brandon, B. Canaud, J.P. Didelez, R. Fedosejevs, R. Ramis, Nucl. Fusion 52, 103011 (2012)

    Article  ADS  Google Scholar 

  16. H.S. Bosch, G.M. Hale, Nucl. Fusion 32, 611 (1992)

    Article  ADS  Google Scholar 

  17. G.S. Fraley, E.J. Linnebur, R.J. Mason, R.L. Morse, Physics Fluids 17, 474 (1974)

    Article  ADS  Google Scholar 

  18. E.G. Corman, W.E. Loewe, G.E. Cooper, A.M. Winslow, Nucl. Fusion 15, 377 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Temporal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temporal, M., Canaud, B., Cayzac, W. et al. Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule. Eur. Phys. J. D 71, 132 (2017). https://doi.org/10.1140/epjd/e2017-80126-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80126-6

Keywords

Navigation