Cell survival probability in a spread-out Bragg peak for novel treatment planning

Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

The problem of variable cell survival probability along the spread-out Bragg peak is one of the long standing problems in planning and optimisation of ion-beam therapy. This problem is considered using the multiscale approach to the physics of ion-beam therapy. The physical reasons for this problem are analysed and understood on a quantitative level. A recipe of solution to this problem is suggested using this approach. This recipe can be used in the design of a novel treatment planning and optimisation based on fundamental science.

Graphical abstract

References

  1. 1.
    U. Amaldi, G. Kraft, J. Radiat. Res. 48, A27 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Goitein, A. Lomax, E. Pedroni, Phys. Today 55, 45 (2002)CrossRefGoogle Scholar
  3. 3.
    H. Tsujii, T. Kamada, M. Baba, H. Tsuji, H. Kato, S. Kato, S. Yamada, S. Yasuda, T. Yanagi, H. Kato et al., New J. Phys. 10, 075009 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Durante, J. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Fokas, G. Kraft, H. An, R. Engenhart-Cabillic, Biochim. Biophys. Acta 1796, 216 (2009)Google Scholar
  7. 7.
    E.J. Hall, A.J. Giaccia, Radiobiology for Radiologist (Lippincott Williams & Wilkins, Philadelphia, Baltimore, New York, London, 2012)Google Scholar
  8. 8.
    A. Solov’yov, Nanoscale Insights into Ion-Beam Cancer Therapy (Springer, 2017)Google Scholar
  9. 9.
    E.L. Alpen, Radiation Biophysics (Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, 1998)Google Scholar
  10. 10.
    H. Paganetti et al., Int. J. Radiat. Oncol. Biol. Phys. 53, 407 (2002)CrossRefGoogle Scholar
  11. 11.
    M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    T. Elsaesser, M. Kraemer, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 71, 866 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Scholz, A. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Beuve, Radiat. Res. 172, 394 (2009)CrossRefGoogle Scholar
  15. 15.
    E. Surdutovich, A. Solov’yov, Eur. Phys. J. D 68, 353 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    T. Elsaesser, M. Scholz, Radiat. Res. 167, 319 (2007)CrossRefGoogle Scholar
  17. 17.
    T. Friedrich, U. Scholz, T. Elsässer, M. Durante, M. Scholz, Int. J. Radiat. Biol. 88, 103 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Underwood, H. Paganetti, Int. J. Radiat. Oncol. Biol. Phys. 95, 56 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A. Verkhovtsev, E. Surdutovich, A. Solov’yov, Sci. Rep. 6, 27654 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Ward, Radiat. Res. 142, 362 (1995)CrossRefGoogle Scholar
  22. 22.
    A. Schipler, G. Iliakis, Nucleic Acids Res. 41, 7589 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Ward, Prog. Nucleic Acids Res. Mol. Biol. 35, 95 (1988)CrossRefGoogle Scholar
  24. 24.
    D.T. Goodhead, Int. J. Radiat. Biol. 65, 7 (1994)CrossRefGoogle Scholar
  25. 25.
    S. Malyarchuk, R. Castore, L. Harrison, DNA Repair 8, 1343 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Malyarchuk, R. Castore, L. Harrison, Nucleic Acids Res. 36, 4872 (2008)CrossRefGoogle Scholar
  27. 27.
    E. Sage, L. Harrison, Mutat. Res. 711, 123 (2011)CrossRefGoogle Scholar
  28. 28.
    E. Surdutovich, D.C. Gallagher, A.V. Solov’yov, Phys. Rev. E 84, 051918 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    E. Surdutovich, A. Solov’yov, Phys. Rev. A 82, 051915 (2010)Google Scholar
  30. 30.
    P. de Vera et al., Phys. Rev. Lett., submitted (2017)Google Scholar
  31. 31.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)CrossRefGoogle Scholar
  32. 32.
    G. Sushko, I. Solov’yov, A. Verkhovtsev, S.V. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    B. Jakob, M. Scholz, G. Taucher-Scholz, Radiat. Res. 159, 676 (2003)CrossRefGoogle Scholar
  34. 34.
    I. Abril, R. Garcia-Molina, C. Denton, I. Kyriakou, D. Emfietzoglou, Radiat. Res. 175, 247 (2011)CrossRefGoogle Scholar
  35. 35.
    W. Friedland, E. Schmitt, P. Kundrat et al., Sci. Rep. 7, 45161 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    E. Surdutovich, O. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    E. Scifoni, E. Surdutovich, A. Solov’yov, Phys. Rev. E 81, 021903 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M.E. Rudd, Y.K. Kim, D.H. Madison, T. Gay, Rev. Mod. Phys. 64, 441 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Surdutovich, A. Solov’yov, Eur. Phys. J. D 69, 193 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsOakland UniversityRochesterUSA
  2. 2.MBN Research CenterFrankfurt am MainGermany

Personalised recommendations