Atoms in the counter-propagating frequency-modulated waves: splitting, cooling, confinement

Regular Article
  • 22 Downloads

Abstract

We show that the counter-propagating frequency-modulated (FM) waves of the same intensity can split an orthogonal atomic beam into two beams. We calculate the temperature of the atomic ensemble for the case when the atoms are grouped around zero velocity in the direction of the waves propagation. The high-intensity laser radiation with a properly chosen carrier frequency can form a one-dimensional trap for atoms. We carry out the numerical simulation of the atomic motion (two-level model of the atom-field interaction) using parameters appropriate for sodium atoms and show that sub-Doppler cooling can be reached. We suppose that such a cooling is partly based on the cooling without spontaneous emission in polychromatic waves [H. Metcalf, Phys. Rev. A 77, 061401 (2008)]. We calculate the state of the atom in the field by the Monte Carlo wave-function method and describe its mechanical motion by the classical mechanics.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A. Ashkin, Phys. Rev. Lett. 25, 1321 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    S. Chu, Rev. Mod. Phys. 70, 685 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    V.I. Balykin, V.G. Minogin, V.S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    V.G. Minogin, V.S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, New York, 1987)Google Scholar
  7. 7.
    H.J. Metcalf, P. van der Stratten, Laser Cooling and Trapping (Springer-Verlag, New York, Berlin, Heidelberg, 1999)Google Scholar
  8. 8.
    T.G.M. Freegarde, J. Waltz, W. Hänsch, Opt. Commun. 117, 262 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Schütze, R. Wynands, D. Meschede, Phys. Rev. A 56, R3354 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    V.I. Romanenko, L.P. Yatsenko, J. Phys. B 44, 115305 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    V.I. Balykin, J. Exp. Theor. Phys. Lett. 81, 209 (2005)CrossRefGoogle Scholar
  12. 12.
    D.N. Yanyshev, V.I. Balykin, Y.V. Vladimirova, V.N. Zadkov, Phys. Rev. A 87, 033411 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Romanenko, A.V. Romanenko, Ye.G. Udovitskaya, L.P. Yatsenko, Ukr. J. Phys. 58, 438 (2013)CrossRefGoogle Scholar
  14. 14.
    V.I. Romanenko, A.V. Romanenko, Ye.G. Udovitskaya, L.P. Yatsenko, J. Mod. Opt. 61, 839 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Romanenko, Ye.G. Udovitskaya, A.V. Romanenko, L.P. Yatsenko, Phys. Rev. A 90, 053421 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    V.S. Voĭtsekhovich, M.V. Danileĭko, A.N. Negriĭko, V.I. Romanenko, L. Yatsenko, JETP Lett. 49, 161 (1989)ADSGoogle Scholar
  17. 17.
    V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko, Ukr. J. Phys. 61, 309 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Hoffnagle, Opt. Lett. 13, 102 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    M. Zhu, C.W. Oates, J.L. Hall, Phys. Rev. Lett. 67, 46 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    A.S. Parkins, P. Zoller, Phys. Rev. A 45, 6522 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    S.E. Park, H.S. Lee, E. Shin, T.Y. Kwon, S.H. Yang, H. Cho, J. Opt. Soc. Am. B 19, 2595 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    V.S. Voĭtsekhovich, M.V. Danileĭko, A.M. Negrĭko, V.I. Romanenko, L.P. Yatsenko, Ukr. Fiz. Zhurn. 36, 192 (1991)Google Scholar
  23. 23.
    V.S. Voĭtsekhovich, M.V. Danileĭko, A.M. Negrĭko, V.I. Romanenko, L.P. Yatsenko, Sov. J. Quant. Electron. 21, 996 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, H. Metcalf, Phys. Rev. A 64, 063411 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Romanenko, L.P. Yatsenko, J. Exp. Theor. Phys. Lett. 86, 756 (2007)CrossRefGoogle Scholar
  26. 26.
    A.M. Negriyko, V.I. Romanenko, L.P. Yatsenko, Dynamics of Atoms and Molecules in Coherent Laser Fields (in Ukrainian) (Naukova Dumka, Kyiv, 2008)Google Scholar
  27. 27.
    R.D. Glover, T. Bastin, J. Opt. Soc. Am. B 32, B1 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Metcalf, Phys. Rev. A 77, 061401 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    C. Corder, B. Arnold, H. Metcalf, Phys. Rev. Lett. 114, 043002 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    C. Corder, B. Arnold, X. Hua, H. Metcalf, J. Opt. Soc. Am. B 32, B75 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    J. Dalibard, Y. Castin, in Frontiers in Laser Spectroscopy: Varenna on Lake Como, Villa Monastero, 23 June-3 July 1992, edited by T.W. Hänsch, M. Inguscio (North Holland, 1994), Vol. 120, pp. 445–476Google Scholar
  33. 33.
    C.S. Adams, E. Riis, Prog. Quant. Electron. 21, 1 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990), Vol. 1Google Scholar
  35. 35.
    V.G. Minogin, O.T. Serimaa, Opt. Commun. 30, 373 (1979)ADSCrossRefGoogle Scholar
  36. 36.
    K. Mølmer, Phys. Rev. Lett. 66, 2301 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    V. Romanenko, L. Yatsenko, Opt. Commun. 392, 239 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    I. Nebenzahl, A. Szöke, Appl. Phys. Lett. 25, 327 (1974)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Physics of National Academy of Sciences of UkraineKyivUkraine
  2. 2.Kherson National Technical UniversityKhersonUkraine

Personalised recommendations