Plasma characterization in reactive sputtering processes of Ti in Ar/O2 mixtures operated in metal, transition and poisoned modes: a comparison between direct current and high-power impulse magnetron discharges

Regular Article

Abstract

Two reactive sputtering techniques have been studied: direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS), operated in various Ar/O2 gas mixtures using a Ti target. The processes were characterized during different modes of operation including pure argon, metallic, transition and compound mode. Energy flux data as well as data on electron density and temperature were combined to obtain knowledge about the trends and changes in the investigated internal process plasma properties for the different modes investigated. Although there is a large reduction of the mass deposition rate (a factor 10 in DCMS and a factor 14 in HiPIMS), when transiting from the metal to compound mode, we detect no significant decrease of the total energy flux in DCMS and only a minor decrease in HiPIMS ( <20%). Such a result is surprising considering that the neutral flux contribution to the total energy flux is known to be significant. Instead, we find that the reduction of the neutral component is compensated by an increase in the electron and ion flux components, which is experimentally detected as an increase of the effective electron temperature and a slightly increasing (DCMS) or essentially constant (HiPIMS) electron density with increasing oxygen flow rate.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513, 1 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    J.T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 30801 (2012) CrossRefGoogle Scholar
  3. 3.
    D. Lundin, K. Sarakinos, J. Mater. Res. 27, 780 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    J. Musil, P. Baroch, J. Vlcek, K.H. Nam, J.G. Han, Thin Solid Films 475, 208 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974) ADSCrossRefGoogle Scholar
  6. 6.
    H. Kersten, H. Deutsch, H. Steffen, G.M.W. Kroesen, R. Hippler, Vacuum 63, 385 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    I. Petrov, F. Adibi, J.E. Greene, L. Hultman, J. Sundgren, Appl. Phys. Lett. 63, 36 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    I. Petrov, A. Myers, J.E. Greene, J.R. Abelson, J. Vac. Sci. Technol. A: Vac. Surf. Films 12, 2846 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    M. Čada, Z. Hubicka, P. Adámek, J. Kluson, L. Jastrabík, Surf. Coat. Technol. 205, S317 (2011) CrossRefGoogle Scholar
  10. 10.
    V. Stranák, Z. Hubicka, P. Adámek, J. Blažek, M. Tichý, P. Špatenka, R. Hippler, S. Wrehde, Surf. Coat. Technol. 201, 2512 (2006) CrossRefGoogle Scholar
  11. 11.
    D. Lundin, M. Čada, Z. Hubicka, J. Vac. Sci. Technol. A: Vac. Surf. Films 34, 41305 (2016) CrossRefGoogle Scholar
  12. 12.
    D. Depla, S. Mahieu, R. De Gryse, Thin Solid Films 517, 2825 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    I. Safi, Surf. Coat. Technol. 127, 203 (2000) CrossRefGoogle Scholar
  14. 14.
    S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A: Vac. Surf. Films 20, 1877 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    P.-A. Cormier, A. Balhamri, A.-L. Thomann, R. Dussart, N. Semmar, J. Mathias, R. Snyders, S. Konstantinidis, J. Appl. Phys. 113, 013305 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    D. Lundin, M. Stahl, H. Kersten, U. Helmersson, J. Phys. D: Appl. Phys. 42, 185202 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    A.L. Thomann, P.A. Cormier, V. Dolique, N. Semmar, R. Dussart, T. Lecas, B. Courtois, P. Brault, Thin Solid Films 539, 88 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    S. Bornholdt, J. Ye, S. Ulrich, H. Kersten, J. Appl. Phys. 112, 123301 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    S. Bornholdt, N. Itagaki, K. Kuwahara, H. Wulff, M. Shiratani, H. Kersten, Plasma Sources Sci. Technol. 22, 25019 (2013) CrossRefGoogle Scholar
  20. 20.
    V. Stranak, M. Quaas, H. Wulff, Z. Hubicka, S. Wrehde, M. Tichy, R. Hippler, J. Phys. D: Appl. Phys. 41, 055202 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    J. Alami, K. Sarakinos, F. Uslu, C. Klever, J. Dukwen, M. Wuttig, J. Phys. D: Appl. Phys. 42, 115204 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    F. Magnus, T.K. Tryggvason, S. Olafsson, J.T. Gudmundsson, F. Magnus, T.K. Tryggvason, S. Olafsson, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 50601 (2012) CrossRefGoogle Scholar
  23. 23.
    J.T. Gudmundsson, D. Lundin, N. Brenning, M.A. Raadu, C. Huo, T.M. Minea, Plasma Sources Sci. Technol. 25, 65004 (2016) CrossRefGoogle Scholar
  24. 24.
    J.A. Thornton, Thin Solid Films 54, 23 (1978) ADSCrossRefGoogle Scholar
  25. 25.
    M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 1 (2010) CrossRefGoogle Scholar
  26. 26.
    S. Gauter, M. Fröhlich, W. Garkas, M. Polak, H. Kersten, Plasma Sources Sci. Technol. 26, 65013 (2017) CrossRefGoogle Scholar
  27. 27.
    A. Piel, Plasma physics: an introduction to laboratory, space, and fusion plasmas (Springer, Berlin Heidelberg, 2010) Google Scholar
  28. 28.
    I. Ivanov, S. Statev, V. Orlinov, R. Shkevov, Vacuum 43, 837 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    F. Haase, D. Lundin, S. Bornholdt, H. Kersten, Contrib. Plasma Phys. 55, 701 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    P. Baroch, J. Musil, J. Vlcek, K.H. Nam, J.G. Han, Surf. Coat. Technol. 193, 107 (2005) CrossRefGoogle Scholar
  31. 31.
    S. Berg, T. Nyberg, Thin Solid Films 476, 215 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    T. Kubart, M. Aiempanakit, J. Andersson, T. Nyberg, S. Berg, U. Helmersson, Surf. Coat. Technol. 205, S303 (2011) CrossRefGoogle Scholar
  33. 33.
    M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen, T. Kubart, Surf. Coat. Technol. 205, 4828 (2011) CrossRefGoogle Scholar
  34. 34.
    M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J. Gudmundsson, U. Helmersson, Surf. Coat. Technol. 205, 591 (2010) CrossRefGoogle Scholar
  35. 35.
    A. Mishra, P.J. Kelly, J.W. Bradley, Plasma Sources Sci. Technol. 19, 45014 (2010) CrossRefGoogle Scholar
  36. 36.
    G. West, P. Kelly, P. Barker, A. Mishra, J. Bradley, Plasma Process. Polym. 6, S543 (2009) CrossRefGoogle Scholar
  37. 37.
    P. Leroy, S. Konstantinidis, S. Mahieu, R. Snyders, D. Depla, J. Phys. D: Appl. Phys. 44, 115201 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    D. Lundin, J.T. Gudmundsson, N. Brenning, M.A. Raadu, T.M. Minea, J. Appl. Phys. 121, 171917 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    M. Čada, D. Lundin, Z. Hubicka, J. Appl. Phys. 121, 171913 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    M. Bowes, J.W. Bradley, J. Phys. D: Appl. Phys. 47, 265202 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    S. Mahieu, D. Depla, J. Phys. D: Appl. Phys. 42, 53002 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101, 013301 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    N. Brenning, J.T. Gudmundsson, D. Lundin, T. Minea, M.A. Raadu, U. Helmersson, Plasma Sources Sci. Technol. 25, 65024 (2016) CrossRefGoogle Scholar
  44. 44.
    T. Shimizu, M. Villamayor, D. Lundin, U. Helmersson, J. Phys. D: Appl. Phys. 49, 1 (2016) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Experimental and Applied Physics, Kiel UniversityKielGermany
  2. 2.Laboratoire de Physique des Gaz et des Plasmas – LPGP, UMR 8578, CNRS – Université Paris-SudOrsayFrance

Personalised recommendations