Skip to main content
Log in

Gas phase Boudouard reactions involving singlet–singlet and singlet–triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Rate constants for the Boudouard reactions: CO + CO → CO2 + C and CO + CO → C2O + O, involving ground and vibrationally excited states for both singlet–singlet and singlet–triplet reactant CO molecules, have been obtained by using the transition-state theory on an ab initio generated potential energy surface. The dependence of the activation energies for the different processes on the vibrational energy of reactants has been estimated through a parametrization that accounts for the utilization of vibrational energy and is calculated by the forward and backward ab initio activation energies of the relevant processes at zero vibrational energy. The results and their comparison with available experimental reaction rates demonstrate the importance of vibrational excitation not only for the singlet–singlet reactions, but also for the singlet–triplet ones, which are here investigated for the first time. Finally, the implications of the present results on the kinetics of CO/CO2 cold plasmas are discussed: for their modeling the temperature dependence of the obtained rates for singlet–singlet and singlet–triplet reactants in the ground vibrational states have been represented by both Arrhenius and deformed Arrhenius equations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Capitelli, R. Celiberto, G. Colonna, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, Fundamental Aspects of Plasma Chemical Physics, Kinetics, Springer Series on Atomic, Optical, and Plasma Physics (Springer-Verlag, New York, 2016), Vol. 74

  2. R. Farrenq, C. Rossetti, Chem. Phys. 92, 401 (1985)

    Article  ADS  Google Scholar 

  3. S. Debenedictis, C. Gorse, M. Cacciatore, M. Capitelli, F. Cramarossa, R. D’Agostino, Chem. Phys. Lett. 96, 674 (1983)

    Article  ADS  Google Scholar 

  4. C. Gorse, M. Cacciatore, M. Capitelli, Chem. Phys. 85, 163 (1984)

    ADS  Google Scholar 

  5. S. Debenedictis, M. Capitelli, F. Cramarossa, C. Gorse, Chem. Phys. 111, 361 (1987)

    Article  Google Scholar 

  6. K.A. Essenhigh, Y.G. Utkin, C. Bernard, I.V. Adamovich, J.W. Rich, Chem. Phys. 330, 506 (2006)

    Article  ADS  Google Scholar 

  7. K.A. Essenhigh, Energy transfer and chemistry of carbon monoxide in vibrational mode non equilibrium, PhD Dissertation, Ohio State University, 2005

  8. E. Plönjes, P. Palm, G.B. Viswanathan, V.V. Subramaniam, I.V. Adamovich, W.R. Lempert, H.L. Fraser, J.W. Rich, Chem. Phys. Lett. 352, 342 (2002)

    Article  ADS  Google Scholar 

  9. S. Mori, H. Akatsuka, M. Suzuki, J. Nucl. Sci. Technol. 38, 850 (2001)

    Article  Google Scholar 

  10. S. Mori, M. Fukoya, M. Suzuki, Trans. Mater. Res. Soc. Jpn. 32, 513 (2007)

    Google Scholar 

  11. I. Belov, J. Vanneste, M. Aghaee, S. Paulussen, A. Bogaerts, Plasma Process. Polym. 14, 1600065 (2017)

    Article  Google Scholar 

  12. T. Kozàk, A. Bogaerts, Plasma Sources Sci. Technol. 23, 045004 (2014)

    Article  ADS  Google Scholar 

  13. T. Kozàk, A. Bogaerts, Plasma Sources Sci. Technol. 24, 015024 (2015)

    Article  ADS  Google Scholar 

  14. R. Snoeckx, R. Aerts, T. Xin, A. Bogaerts, J. Phys. Chem. C 117, 4957 (2013)

    Article  Google Scholar 

  15. L.D. Pietanza, G. Colonna, G. D’Ammando, A. Laricchiuta, M. Capitelli, Plasma Sources Sci. Technol. 24, 042002 (2015)

    Article  ADS  Google Scholar 

  16. L.D. Pietanza, G. Colonna, G. D’Ammando, A. Laricchiuta, M. Capitelli, Phys. Plasmas 22, 013515 (2016)

    Article  ADS  Google Scholar 

  17. L.D. Pietanza, G. Colonna, G. D’Ammando, A. Laricchiuta, M. Capitelli, Chem. Phys. 468, 44 (2016)

    Article  ADS  Google Scholar 

  18. I. Armenise, E.V. Kustova, Chem. Phys. 415, 269 (2013)

    Article  ADS  Google Scholar 

  19. E. Nagnibeda, E. Kustova, Non-Equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes, Springer Series Heat and Mass Transfer (Springer, Berlin, 2009)

  20. V.D. Rusanov, A.A. Fridman, S.V. Sholin, Sov. Phys. Usp. 24,447 (1981)

    Article  ADS  Google Scholar 

  21. V.D. Rusanov, A.A. Fridman, S.V. Sholin, Sov. Phys. Dokl. 22, 739 (1976)

    ADS  Google Scholar 

  22. A.I. Maksimov, L.S. Polak, A.F. Sergienko, D.I. Slovetskii, Khim. Vysok. Energy 13, 358 (1979)

    Google Scholar 

  23. O. Dunn, P. Harteck, S. Dondes, J. Phys. Chem. 77, 878 (1973)

    Article  Google Scholar 

  24. G. Liuti, S. Dondes, P. Harteck, J. Chem. Phys. 44, 4052 (1966)

    Article  ADS  Google Scholar 

  25. G. Liuti, S. Dondes, P. Harteck, Adv. Chem. Soc. 89, 65 (1969)

    Article  Google Scholar 

  26. D.G. Truhlar, A.D. Isaacson, B.C. Garrett, Generalized Transition State Theory, Theory of Chemical Reaction Dynamics (CRC Press, Inc., Boca Raton, FL, USA, 1985), Vol. 4, p. 65

  27. A. Fernàndez-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Chem. Rev. 106, 4518 (2006)

    Article  Google Scholar 

  28. P.R.P. Barreto, A.F.A. Vilela, R. Gargano, J. Mol. Struct. (THEOCHEM) 639, 167 (2003)

    Article  Google Scholar 

  29. P.R.P. Barreto, A.F.A. Vilela, R. Gargano, Int. J. Quant. Chem. 103, 685 (2005)

    Article  ADS  Google Scholar 

  30. H.deO. Euclides, Master Degree Thesis, 2015

  31. H.deO. Euclides, P.R.P. Barreto, J. Mol. Model. 23, 176 (2013)

    Article  Google Scholar 

  32. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Thermodynamics, Springer Series on Atomic, Optical, and Plasma Physics (Springer-Verlag, New York, 2011), Vol. 66

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian09, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2009)

  34. K.K. Irikura, J. Phys. Chem. Ref. Data 36, 389 (2007)

    Article  ADS  Google Scholar 

  35. NIST Chemistry Webbook, 2017 (http://webbook.nist.gov/chemistry)

  36. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966)

  37. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39, 1972

  38. W.B. Person, G. Zerbi, eds., Vibrational Intensities in Infrared and Raman Spectroscopy (Elsevier, Amsterdam, 1982)

  39. D.S. Alekhin, D.M. Klimov, S.T. Surzhikov, High Temp. 44, 373 (2006) [Teplofiz. Vysok. Temp. 44, 378 (2006)]

    Article  Google Scholar 

  40. S. Heijkers, R. Snoeckx, T. Kozak, T. Silva, T. Godfroid, T. Britun, T. Snyders, A. Bogaerts, J. Phys. Chem. C 119, 12815 (2015)

    Article  Google Scholar 

  41. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008), pp. 314–315

  42. M. Nishiyama, S. Kleijn, V. Aquilanti, T. Kasai, Chem. Phys. Lett. 482, 325 (2009)

    Article  ADS  Google Scholar 

  43. V. Aquilanti, K.C. Mundim, M. Elango, S. Kleijn, T. Kasai, Chem. Phys. Lett. 498, 209 (2010)

    Article  ADS  Google Scholar 

  44. V.H.C. Silva, V. Aquilanti, H.C.B. de Oliveira, K.C. Mundim, Chem. Phys. Lett. 590, 201 (2013)

    Article  ADS  Google Scholar 

  45. N.D. Coutinho, V.H.C. Silva, H.C.B. De Oliveira, A.J. Camargo, K.C. Mundim, V. Aquilanti, J. Phys. Chem. Lett. 6, 1553 (2015)

    Article  Google Scholar 

  46. N.D. Coutinho, V. Aquilanti, V.H.C. Silva, A.J. Camargo, K.C. Mundim, H.C.B. De Oliveira, J. Phys. Chem. A 120, 5408 (2016)

    Article  Google Scholar 

  47. V.H.C. Silva, N.D. Coutinho, V. Aquilanti, in Conference: International Conference of Computational Methods in Sciences and Engineering – 2016, edited by T.E. Simos (2016), Vol. 1790, p. 020006

  48. V.H.C. Silva, V. Aquilanti, H.C.B. Oliveira, K.C. Mundim, J. Comput. Chem. 38, 178 (2017)

    Article  Google Scholar 

  49. V. Aquilanti, N.D. Coutinho, V.H.C. Silva, Philos. Trans. R. Soc. A 375, 20160201 (2017)

    Article  ADS  Google Scholar 

  50. M. Capitelli, C.M. Ferreira, B.F. Gordiets, A.I. Osipov, Plasma Kinetics in Atmospheric Gases, Springer Series on Atomic, Optical, and Plasma Physics (2013), Vol. 31

  51. S.O. Macheret, S.A. Losev, G.G. Chernyi, B.V. Potapkin, Physical and Dynamical Processes, Gas Dynamics: Cross Sections and Rate Constants, Progressin Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 2002), Vol. I

  52. U.M. Gershenzon, V.I. Egorov, V.B. Rozenshein, Chem. High Energy 11, 291 (1977)

    Google Scholar 

  53. A.A. Levitsky, S.O. Macheret, A.A. Fridman, Chemical Reactions in Non-Equilibrium Plasmas (Nauka, Moscow, 1983), p. 2 (in Russian)

  54. R.L. Le Roy, J. Phys. Chem. 73, 4338 (1969)

    Article  Google Scholar 

  55. R.A. Young, G. Van Volkenburg, J. Chem. Phys. 55, 2990 (1971)

    Article  ADS  Google Scholar 

  56. R.J. Donovan, D. Husain, Trans. Faraday Soc. 63, 2879 (1967)

    Article  Google Scholar 

  57. J.P. Martin, M.-Y. Perrin, P.J. Porshnev, Chem. Phys. Lett. 332, 283 (2000)

    Article  ADS  Google Scholar 

  58. G.M. Grigorian, A. Cenian, J. Phys. D: Appl. Phys. 48, 105201 (2015)

    Article  ADS  Google Scholar 

  59. G.M. Grigorian, I.V. Kochetov, Plasma Phys. Rep. 30, 788 (2004)

    Article  ADS  Google Scholar 

  60. R.C. Macdonald, A. Munafò, C.O. Johnston, M. Panesi, Phys. Rev. Fluids 1, 043401 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Palazzetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, P.R.P., Euclides, H.d.O., Albernaz, A.F. et al. Gas phase Boudouard reactions involving singlet–singlet and singlet–triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas. Eur. Phys. J. D 71, 259 (2017). https://doi.org/10.1140/epjd/e2017-80103-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80103-1

Keywords

Navigation