Driving frequency fluctuations in pulsed capacitively coupled plasmas

  • John Poulose
  • Matthew Goeckner
  • Steven Shannon
  • David Coumou
  • Lawrence Overzet
Regular Article

Abstract

We report time resolved measurements of the RF current, voltage and complex impedance for pulsed plasmas through electropositive (Ar) and electronegative (CF4, O2) gases and gas mixtures. In addition, we report measurements of the effective frequency versus time at various locations within the RF circuitry. The frequency is found to fluctuate away from that sourced by the RF generator when the plasma re-ignites. Plasma re-ignition induces abrupt impedance changes due to the re-formation of the plasma sheath and bulk. These fast changes in the plasma impedance cause the measured changes in the voltage and current frequencies. As a result, the frequency of the RF power at the plasma electrodes was found to be as much as 250 kHz different from that being sourced by the RF generator for short periods of time. These frequency fluctuations are of particular interest to the application of frequency tuned matching networks.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    F. Bose, R. Patrick, H.P. Baltes, J. Vac. Sci. Technol. B 12, 2805 (1994)CrossRefGoogle Scholar
  2. 2.
    P.I. Klimecky, J.W. Grizzle, F.L. Terry, J. Vac. Sci. Technol. A 21, 706 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kanoh, M. Yamage, H. Takada, Jpn J. Appl. Phys. 40, 1457 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    S. Banna, A. Agarwal, G. Cunge, M. Darnon, E. Pargon, O. Joubert, J. Vac. Sci. Technol. A 30, 040801 (2012)CrossRefGoogle Scholar
  5. 5.
    J.T. Verdeyen, J. Beberman, L. Overzet, J. Vac. Sci. Technol. A 8, 1851 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    R.W. Boswell, D. Henry, Appl. Phys. Lett. 47, 1095 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    L.J. Overzet, J.T. Verdeyen, Appl. Phys. Lett. 48, 695 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    S. Samukawa, T. Mieno, Plasma Sources Sci. Technol. 5, 132 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    L.J. Overzet, F.Y. Leong-Rousey, Plasma Sources Sci. Technol. 4, 432 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Coumou, Coherent feedforward impedance correction and feedback power regulation in a plasma processing RF power delivery system, in 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), 2013, pp. 1–4, ISSN 1093-5142Google Scholar
  11. 11.
    M.J. Goeckner, J.M. Marquis, B.J. Markham, A.K. Jindal, E.A. Joseph, B.S. Zhou, Rev. Sci. Inst. 75, 884 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    B. Boashash, Proc. IEEE 80, 520 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    L.J. Overzet, B.A. Smith, J. Kleber, S.K. Kanakasabapathy, Jpn J. Appl. Phys. 36, 2443 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Wagner, H.M. Katsch, Plasma Sources Sci. Technol. 15, 156 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, IEEE Trans. Plasma Sci. 19, 660 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    L.J. Overzet, J. Kleber, Plasma Sources Sci. Technol. 7, 512 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Coumou, D.H. Clark, T. Kummerer, M. Hopkins, D. Sullivan, S. Shannon, IEEE Trans. Plasma Sci. 42, 1880 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, A. Zafar, D.J. Coumou, S.C. Shannon, M.J. Kushner, J. Appl. Phys. 117, 233302 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    V. Matko, Sensors 6, 746 (2006)CrossRefGoogle Scholar
  20. 20.
    W.D. George, M.C. Selby, R. Scolnik, J. Res. Natl. Bureau Stand. 38, 309 (1947)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at DallasRichardsonUSA
  2. 2.Department of PhysicsUniversity of Texas at DallasRichardsonUSA
  3. 3.Department of Nuclear EngineeringNorth Carolina State UniversityRaleighUSA
  4. 4.MKS Instruments, Power SolutionsRochesterUSA

Personalised recommendations