γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity – preliminary methodological study and discussion

  • Martin Falk
  • Zuzana Horakova
  • Marketa Svobodova
  • Michal Masarik
  • Olga Kopecna
  • Jaromir Gumulec
  • Martina Raudenska
  • Daniel Depes
  • Alena Bacikova
  • Iva Falkova
  • Hana Binkova
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

In order to improve patients’ post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures – CD90, CD90+, and a mixed culture of these cells – were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV–HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

Graphical abstract

References

  1. 1.
    H. Binková, Otorinologie a foniatrie 59, 114 (2010)Google Scholar
  2. 2.
    Z. Horáková, Otorinologie a foniatrie 59, 107 (2010)Google Scholar
  3. 3.
    I. Falkova, Zdravotníctvo a Sociálna práca 11, 19 (2016)Google Scholar
  4. 4.
    F. Perri, Head Neck 37, 763 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Mountzios, Ann. Oncol. 25, 1889 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Han, in Advances in Genetics Research, edited by K.V. Urbano (Nova Science, 2010)Google Scholar
  7. 7.
    T. Ettl, Oral Oncol. 51, 158 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Peng, Mol. Med. Rep. 10, 1709 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Maalouf, Int. J. Radiat. Oncol. Biol. Phys. 74, 200 (2009)CrossRefGoogle Scholar
  10. 10.
    Q. Wang, Int. J. Cancer 128, 1546 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Kuilman, Genes Dev. 24, 2463 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Lujambio, Bioessays 38, S56 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Ježková, Appl. Radiat. Isot. 83(Pt B), 128 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Falk, Crit. Rev. Eukaryot. Gene Expr. 24, 225 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Sevcik, Cell Signal. 24, 1023 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Sevcik, Cell Signal. 25, 1186 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Affolter, Oncol. Rep. 29, 785 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Ji, Int. J. Clin. Exp. Med. 8, 7002 (2015)Google Scholar
  19. 19.
    V. Salvatore, Oncotarget 1 (2016)Google Scholar
  20. 20.
    M. Falk, Appl. Radiat. Isot. 83, 177 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Falk, Biochim. Biophys. Acta 1773, 1534 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Kozubek, Cytometry 45, 1 (2001)CrossRefGoogle Scholar
  23. 23.
    P. Matula, in IEEE International Symposium on Biomedical Imaging: from Nano to Macro 2009 ISBI 09 (2009), p. 1138Google Scholar
  24. 24.
    M. Svobodova, Oncotarget, 2017, https://doi.org/10.18632/oncotarget.19914
  25. 25.
    B. Joshua, Head Neck 34, 42 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Falk, Mutat. Res. 704, 88 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Hofer, J. Med. Chem. 59, 3003 (2016)CrossRefGoogle Scholar
  28. 28.
    G. Wolf, Ear Nose Throat J. 80, 897 (2001)Google Scholar
  29. 29.
    M. Raudenska, Tumour Biol. 36, 9929 (2015)CrossRefGoogle Scholar
  30. 30.
    E. Lukásová, Chromosoma 112, 221 (2004)CrossRefGoogle Scholar
  31. 31.
    E. Lukášová, Biochim. Biophys. Acta 1833, 767 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Martin Falk
    • 1
  • Zuzana Horakova
    • 2
  • Marketa Svobodova
    • 3
    • 4
  • Michal Masarik
    • 3
    • 4
  • Olga Kopecna
    • 1
  • Jaromir Gumulec
    • 3
    • 4
  • Martina Raudenska
    • 3
    • 4
  • Daniel Depes
    • 1
  • Alena Bacikova
    • 1
  • Iva Falkova
    • 1
  • Hana Binkova
    • 2
  1. 1.Department of Cell Biology and RadiobiologyInstitute of Biophysics of CASBrnoCzech Republic
  2. 2.Department of Otorhinolaryngology and Head and Neck SurgerySt. Anne’s University Hospital and Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
  3. 3.Department of Pathological PhysiologyFaculty of Medicine, Masaryk UniversityBrnoCzech Republic
  4. 4.Department of PhysiologyFaculty of Medicine, Masaryk UniversityBrnoCzech Republic

Personalised recommendations