Skip to main content
Log in

Collision-induced evaporation of water clusters and contribution of momentum transfer

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Calvo, P. Parneix, in Handbook of Nanophysics: Clusters and Fullerenes, edited by K. Sattler (CRC Press, Boca Raton, 2010), Chap. 1

  2. K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999)

    Article  ADS  Google Scholar 

  3. M. Schmidt, R. Kusche, W. Kronmüller, B. von Issendorff, H. Haberland, Phys. Rev. Lett. 79, 99 (1997)

    Article  ADS  Google Scholar 

  4. C. Bréchignac, P. Cahuzac, B. Concina, J. Leygnier, Phys. Rev. Lett. 89, 203401 (2002)

    Article  ADS  Google Scholar 

  5. G.A. Breaux, R.C. Benirschke, T. Sugai, B.S. Kinnear, M.F. Jarrold, Phys. Rev. Lett. 91, 215508 (2003)

    Article  ADS  Google Scholar 

  6. F. Chirot, P. Feiden, S. Zamith, P. Labastie, J.-M. L’Hermite, J. Chem. Phys. 129, 164514 (2008)

    Article  ADS  Google Scholar 

  7. C.E. Klots, Z. Phys. D: At. Mol. Clusters 5, 83 (1987)

    Article  Google Scholar 

  8. C.R. Albertoni, R. Kuhn, H.W. Sarkas, A.W. Castelman Jr., J. Chem. Phys. 87, 5043 (1987)

    Article  ADS  Google Scholar 

  9. F. Gobet, B. Farizon, M. Farizon, M.J. Gaillard, J.P. Buchet, M. Carré, P. Scheier, T.D. Märk, Phys. Rev. Lett. 87, 203401 (2001)

    Article  ADS  Google Scholar 

  10. M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  11. F. Gobet, B. Farizon, M. Farizon, M.J. Gaillard, J.P. Buchet, M. Carré, P. Scheier, T.D. Märk, Phys. Rev. A 63, 033202 (2001)

    Article  ADS  Google Scholar 

  12. R. Delaunay, M. Gatchell, P. Rousseau, A. Domaracka, S. Maclot, Y. Wang, M.H. Stockett, T. Chen, L. Adoui, M. Alcamí, F. Martín, H. Zettergren, H. Cederquist, B.A. Huber, J. Phys. Chem. Lett. 6, 1536 (2015)

    Article  Google Scholar 

  13. J.T. Snodgrass, C.M. Roehl, M.T. Bowers, Chem. Phys. Lett. 159, 10 (1989)

    Article  ADS  Google Scholar 

  14. F.X. Gadéa, M. Amarouche, Chem. Phys. 140, 385 (1990)

    Article  ADS  Google Scholar 

  15. F. Calvo, J. Galindez, F.X. Gadéa, Phys. Chem. Chem. Phys. 5, 321 (2003)

    Article  Google Scholar 

  16. R. Ludwig, Angew. Chem. Int. Ed. 40, 1808 (2001)

    Article  Google Scholar 

  17. F.N. Keutsch, R.J. Saykally, Proc. Natl. Acad. Sci. USA 98, 10533 (2001)

    Article  ADS  Google Scholar 

  18. P. Dawson, Int. J. Mass Spectrom. Ion Process. 43, 195 (1982)

    Article  ADS  Google Scholar 

  19. T. Magnera, D. David, J. Michl, Chem. Phys. Lett. 182, 363 (1991)

    Article  ADS  Google Scholar 

  20. K. Honma, L. Sunderlin, P.B. Armentrout, Int. J. Mass Spectrom. Ion Process. 117, 237 (1992)

    Article  ADS  Google Scholar 

  21. S. Tomita, J.S. Forster, P. Hvelplund, A.S. Jensen, S.B. Nielsen, Eur. Phys. J. D 16, 119 (2001)

    Article  ADS  Google Scholar 

  22. Y. Kawai, S. Yamaguchi, Y. Okada, K. Takeuchi, Y. Yamauchi, S. Ozawa, H. Nakai, Chem. Phys. Lett. 69, 377 (2003)

    Google Scholar 

  23. H. Abdoul-Carime, F. Berthias, L. Feketeová, M. Marciante, F. Calvo, V. Forquet, H. Chermette, B. Farizon, M. Farizon, T.D. Märk, Angew. Chem. Int. Ed. 54, 14685 (2015)

    Article  Google Scholar 

  24. C. Teyssier, R. Fillol, H. Abdoul-Carime, B. Farizon, M. Farizon, T.D. Märk, Rev. Sci. Instrum. 85, 015118 (2014)

    Article  ADS  Google Scholar 

  25. Z.P. Wang, P.M. Dinh, P.-G. Reinhard, E. Suraud, G. Bruny, C. Montano, S. Feil, S. Eden, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Int. J. Mass Spectrom. 285, 143 (2009)

    Article  ADS  Google Scholar 

  26. F. Remacle, R.D. Levine, Proc. Natl. Acad. Sci. USA 103, 6793 (2006)

    Article  ADS  Google Scholar 

  27. T. Kunert, R. Schmidt, Phys. Rev. Lett. 86, 5258 (2001)

    Article  ADS  Google Scholar 

  28. L. Ojamae, I. Shavitt, S.J. Singer, J. Chem. Phys. 109, 5547 (1998)

    Article  ADS  Google Scholar 

  29. J.F. Ziegler, J.P. Biersack, U. Luttmark, in The stopping and range of ions in matter (Pergamon, New York, 1985), Vol. 1

  30. J. Postma, R. Hoekstra, A.G.G.M. Tielens, T. Schlathölther, Astrophys. J. 783, 61 (2014)

    Article  ADS  Google Scholar 

  31. M.H. Stockett, M. Gatchell, T. Chen, N. de Ruette, L. Giacomozzi, M. Wolf, H.T. Schmidt, H. Zettergren, H. Cederquist, J. Phys. Chem. Lett. 6, 4504 (2015)

    Article  Google Scholar 

  32. F. Berthias, V. Buridon, H. Abdoul-Carime, B. Farizon, M. Farizon, P.M. Dinh, P.-G. Reinhard, E. Suraud, T.D. Märk, Phys. Rev. A 89, 062705 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Calvo.

Additional information

Contribution to the Topical Issue “Dynamics of Systems at the Nanoscale”, edited by Andrey Solov’yov and Andrei Korol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, F., Berthias, F., Feketeová, L. et al. Collision-induced evaporation of water clusters and contribution of momentum transfer. Eur. Phys. J. D 71, 110 (2017). https://doi.org/10.1140/epjd/e2017-80062-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80062-5

Navigation