Shape and strength of dynamical couplings between vibrational levels of the H2 +, HD+ and D2 + molecular ions in collision with He as a buffer gas

Abstract

We present a detailed computational analysis for the interaction between the vibrating/rotating molecular ions H2 +, HD+, D2 + colliding with He atoms employed as buffer gas within ion trap experiments. The production and preparation of these molecular ions from their neutrals usually generate rovibrationally excited species which will therefore require internal energy cooling down to their ground vibrational levels for further experimental handling. In this work we describe the calculation of the full 3D interaction potentials and of the ionic vibrational levels needed to obtain the vibrational coupling potential matrix elements which are needed in the multichannel treatment of the rovibrationally inelastic collision dynamics. The general features of such coupling potential terms are discussed for their employment within a quantum dynamical modeling of the relaxation processes, as well as in connection with their dependence on the initial and final vibrational levels which are directly coupled by the present potentials. As a preliminary test of the potential effects on scattering observables, we perform calculations between H2 + and He atoms at the energies of an ion-trap by using either the rigid rotor (RR) approximation or the more accurate vibrationally averaged (VA) description for the v = 0 state of the target. Both schemes are described in detail in the present paper and the differences found in the scattering results are also analysed and discussed. We further present and briefly discuss some examples of state-to-state rovibrationally inelastic cross sections, involving the two lowest vibrational levels of the H2 + molecular target ion, as obtained from our time-independent multichannel quantum scattering code.

Graphical abstract

References

  1. 1.

    R. Wester, J. Phys. B 42, 154001 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    A. Bertelsen, S. Jørgensen, M. Drewsen, J. Phys. B 39, L83 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    K. Okada, M. Wada, T. Takayanagi, S. Ohtani, H.A. Schuessler, Phys. Rev. A 81, 013420 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    A.K. Hansen, O.O. Versolato, L. Kłosowski, S.B. Kristensen, A. Gingell, M. Schwarz, A. Winderberger, J. Ullrich, J.R. Crespo López-Urrutia, M. Drewsen, Nat. Lett. 508, 76 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    P.J. Mohr, B.N. Taylor, D.B. Newell, J. Phys. Chem. Ref. Data 41, 043109 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    L.P. Theard, W.T. Huntress Jr., J. Chem. Phys. 60, 2840 (1974)

    ADS  Article  Google Scholar 

  8. 8.

    F.S. Klein, L. Friedman, J. Chem. Phys. 41, 1789 (1964)

    ADS  Article  Google Scholar 

  9. 9.

    P.J. Brown, E.F. Hayes, J. Chem. Phys. 55, 922 (1971)

    ADS  Article  Google Scholar 

  10. 10.

    S. Bovino, M. Tacconi, F.A. Gianturco, J. Phys. Chem. A 115, 8197 (2011)

    Article  Google Scholar 

  11. 11.

    C. Edmiston, J. Doolittle, K. Murphy, K.C. Tang, W. Wilson, J. Chem. Phys. 52, 3419 (1970)

    ADS  Article  Google Scholar 

  12. 12.

    P.J. Kuntz, Chem. Phys. Lett. 16, 581 (1972)

    ADS  Article  Google Scholar 

  13. 13.

    D.R. McLaughlin, D.L. Thompson, J. Chem. Phys. 70, 2748 (1979)

    ADS  Article  Google Scholar 

  14. 14.

    M.F. Falcetta, P.E. Siska, Mol. Phys. 88, 647 (1996)

    ADS  Google Scholar 

  15. 15.

    M. Meuwly, J.M. Hudson, J. Chem. Phys. 110, 3418 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    W.P. Kraemer, V. Spirko, O. Bludsky, Chem. Phys. 276, 225 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    F. Mrugala, V. Spirko, W.P. Kraemer, J. Chem. Phys. 118, 10547 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    C.N. Ramachandran, D. De Fazio, S. Cavalli, F. Tarantelli, V. Aquilanti, Chem. Phys. Lett. 469, 26 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    A. Aguado, C. Tablero, M. Paniagua, Comput. Phys. Commun. 108, 259 (1998)

    ADS  Article  Google Scholar 

  20. 20.

    M. Hernández-Vera, F.A. Gianturco, R. Wester, H. da Silva Jr., O. Dulieu, S. Schiller, J. Chem. Phys. 146, 124310 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    J.Ph. Karr, L. Hilico, J. Phys. B 39, 2095 (2006)

    ADS  Article  Google Scholar 

  22. 22.

    L. Wolniewicz, J.D. Poll, Mol. Phys. 59, 953 (1986)

    ADS  Article  Google Scholar 

  23. 23.

    R.E. Moss, I.A. Sadler, Mol. Phys. 66, 591 (1989)

    ADS  Article  Google Scholar 

  24. 24.

    R.E. Moss, Mol. Phys. 78, 371 (1993)

    ADS  Article  Google Scholar 

  25. 25.

    D. López-Durán, E. Bodo, F.A. Gianturco, Comput. Phys. Commun. 179, 821 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    M. Hernández-Vera, S. Schiller, R. Wester, F.A. Gianturco, Eur. Phys. J. D 71, 106 (2017)

    Article  Google Scholar 

  27. 27.

    A. Sen, J.W. McGowan, J.B.A. Mitchell, J. Phys. B 20, 1509 (1987)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Antonio Gianturco.

Additional information

Contribution to the Topical Issue “Dynamics of Systems at the Nanoscale”, edited by Andrey Solov’yov and Andrei Korol.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iskandarov, I., Gianturco, F.A., Vera, M.H. et al. Shape and strength of dynamical couplings between vibrational levels of the H2 +, HD+ and D2 + molecular ions in collision with He as a buffer gas. Eur. Phys. J. D 71, 141 (2017). https://doi.org/10.1140/epjd/e2017-80043-8

Download citation