Shape and strength of dynamical couplings between vibrational levels of the H2 +, HD+ and D2 + molecular ions in collision with He as a buffer gas

  • Ibrokhim Iskandarov
  • Francesco Antonio GianturcoEmail author
  • Mario Hernandez Vera
  • Roland Wester
  • Humberto da SilvaJr.
  • Olivier Dulieu
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale


We present a detailed computational analysis for the interaction between the vibrating/rotating molecular ions H2 +, HD+, D2 + colliding with He atoms employed as buffer gas within ion trap experiments. The production and preparation of these molecular ions from their neutrals usually generate rovibrationally excited species which will therefore require internal energy cooling down to their ground vibrational levels for further experimental handling. In this work we describe the calculation of the full 3D interaction potentials and of the ionic vibrational levels needed to obtain the vibrational coupling potential matrix elements which are needed in the multichannel treatment of the rovibrationally inelastic collision dynamics. The general features of such coupling potential terms are discussed for their employment within a quantum dynamical modeling of the relaxation processes, as well as in connection with their dependence on the initial and final vibrational levels which are directly coupled by the present potentials. As a preliminary test of the potential effects on scattering observables, we perform calculations between H2 + and He atoms at the energies of an ion-trap by using either the rigid rotor (RR) approximation or the more accurate vibrationally averaged (VA) description for the v = 0 state of the target. Both schemes are described in detail in the present paper and the differences found in the scattering results are also analysed and discussed. We further present and briefly discuss some examples of state-to-state rovibrationally inelastic cross sections, involving the two lowest vibrational levels of the H2 + molecular target ion, as obtained from our time-independent multichannel quantum scattering code.

Graphical abstract


  1. 1.
    R. Wester, J. Phys. B 42, 154001 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bertelsen, S. Jørgensen, M. Drewsen, J. Phys. B 39, L83 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Okada, M. Wada, T. Takayanagi, S. Ohtani, H.A. Schuessler, Phys. Rev. A 81, 013420 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Hansen, O.O. Versolato, L. Kłosowski, S.B. Kristensen, A. Gingell, M. Schwarz, A. Winderberger, J. Ullrich, J.R. Crespo López-Urrutia, M. Drewsen, Nat. Lett. 508, 76 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Mohr, B.N. Taylor, D.B. Newell, J. Phys. Chem. Ref. Data 41, 043109 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    L.P. Theard, W.T. Huntress Jr., J. Chem. Phys. 60, 2840 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    F.S. Klein, L. Friedman, J. Chem. Phys. 41, 1789 (1964)ADSCrossRefGoogle Scholar
  9. 9.
    P.J. Brown, E.F. Hayes, J. Chem. Phys. 55, 922 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    S. Bovino, M. Tacconi, F.A. Gianturco, J. Phys. Chem. A 115, 8197 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Edmiston, J. Doolittle, K. Murphy, K.C. Tang, W. Wilson, J. Chem. Phys. 52, 3419 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Kuntz, Chem. Phys. Lett. 16, 581 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    D.R. McLaughlin, D.L. Thompson, J. Chem. Phys. 70, 2748 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    M.F. Falcetta, P.E. Siska, Mol. Phys. 88, 647 (1996)ADSGoogle Scholar
  15. 15.
    M. Meuwly, J.M. Hudson, J. Chem. Phys. 110, 3418 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    W.P. Kraemer, V. Spirko, O. Bludsky, Chem. Phys. 276, 225 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    F. Mrugala, V. Spirko, W.P. Kraemer, J. Chem. Phys. 118, 10547 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    C.N. Ramachandran, D. De Fazio, S. Cavalli, F. Tarantelli, V. Aquilanti, Chem. Phys. Lett. 469, 26 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Aguado, C. Tablero, M. Paniagua, Comput. Phys. Commun. 108, 259 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M. Hernández-Vera, F.A. Gianturco, R. Wester, H. da Silva Jr., O. Dulieu, S. Schiller, J. Chem. Phys. 146, 124310 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    J.Ph. Karr, L. Hilico, J. Phys. B 39, 2095 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    L. Wolniewicz, J.D. Poll, Mol. Phys. 59, 953 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    R.E. Moss, I.A. Sadler, Mol. Phys. 66, 591 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    R.E. Moss, Mol. Phys. 78, 371 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    D. López-Durán, E. Bodo, F.A. Gianturco, Comput. Phys. Commun. 179, 821 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    M. Hernández-Vera, S. Schiller, R. Wester, F.A. Gianturco, Eur. Phys. J. D 71, 106 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Sen, J.W. McGowan, J.B.A. Mitchell, J. Phys. B 20, 1509 (1987)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Ibrokhim Iskandarov
    • 1
  • Francesco Antonio Gianturco
    • 1
    Email author
  • Mario Hernandez Vera
    • 1
  • Roland Wester
    • 1
  • Humberto da SilvaJr.
    • 2
  • Olivier Dulieu
    • 2
  1. 1.Institut für Ionen Physik und Angewandte Physik, Innsbruck UniversitätInnsbruckAustria
  2. 2.Laboratoire Aimé Cotton, CNRS/Université Paris-Sud/ENS Cachan, Université Paris-SaclayOrsayFrance

Personalised recommendations